LCOV - code coverage report
Current view: top level - arch/x86/include/asm - spinlock.h (source / functions) Hit Total Coverage
Test: btrfstest.info Lines: 3 3 100.0 %
Date: 2014-11-28 Functions: 0 0 -

          Line data    Source code
       1             : #ifndef _ASM_X86_SPINLOCK_H
       2             : #define _ASM_X86_SPINLOCK_H
       3             : 
       4             : #include <linux/jump_label.h>
       5             : #include <linux/atomic.h>
       6             : #include <asm/page.h>
       7             : #include <asm/processor.h>
       8             : #include <linux/compiler.h>
       9             : #include <asm/paravirt.h>
      10             : #include <asm/bitops.h>
      11             : 
      12             : /*
      13             :  * Your basic SMP spinlocks, allowing only a single CPU anywhere
      14             :  *
      15             :  * Simple spin lock operations.  There are two variants, one clears IRQ's
      16             :  * on the local processor, one does not.
      17             :  *
      18             :  * These are fair FIFO ticket locks, which support up to 2^16 CPUs.
      19             :  *
      20             :  * (the type definitions are in asm/spinlock_types.h)
      21             :  */
      22             : 
      23             : #ifdef CONFIG_X86_32
      24             : # define LOCK_PTR_REG "a"
      25             : #else
      26             : # define LOCK_PTR_REG "D"
      27             : #endif
      28             : 
      29             : #if defined(CONFIG_X86_32) && (defined(CONFIG_X86_PPRO_FENCE))
      30             : /*
      31             :  * On PPro SMP, we use a locked operation to unlock
      32             :  * (PPro errata 66, 92)
      33             :  */
      34             : # define UNLOCK_LOCK_PREFIX LOCK_PREFIX
      35             : #else
      36             : # define UNLOCK_LOCK_PREFIX
      37             : #endif
      38             : 
      39             : /* How long a lock should spin before we consider blocking */
      40             : #define SPIN_THRESHOLD  (1 << 15)
      41             : 
      42             : extern struct static_key paravirt_ticketlocks_enabled;
      43             : static __always_inline bool static_key_false(struct static_key *key);
      44             : 
      45             : #ifdef CONFIG_PARAVIRT_SPINLOCKS
      46             : 
      47             : static inline void __ticket_enter_slowpath(arch_spinlock_t *lock)
      48             : {
      49             :         set_bit(0, (volatile unsigned long *)&lock->tickets.tail);
      50             : }
      51             : 
      52             : #else  /* !CONFIG_PARAVIRT_SPINLOCKS */
      53             : static __always_inline void __ticket_lock_spinning(arch_spinlock_t *lock,
      54             :                                                         __ticket_t ticket)
      55             : {
      56             : }
      57             : static inline void __ticket_unlock_kick(arch_spinlock_t *lock,
      58             :                                                         __ticket_t ticket)
      59             : {
      60             : }
      61             : 
      62             : #endif /* CONFIG_PARAVIRT_SPINLOCKS */
      63             : 
      64             : static __always_inline int arch_spin_value_unlocked(arch_spinlock_t lock)
      65             : {
      66             :         return lock.tickets.head == lock.tickets.tail;
      67             : }
      68             : 
      69             : /*
      70             :  * Ticket locks are conceptually two parts, one indicating the current head of
      71             :  * the queue, and the other indicating the current tail. The lock is acquired
      72             :  * by atomically noting the tail and incrementing it by one (thus adding
      73             :  * ourself to the queue and noting our position), then waiting until the head
      74             :  * becomes equal to the the initial value of the tail.
      75             :  *
      76             :  * We use an xadd covering *both* parts of the lock, to increment the tail and
      77             :  * also load the position of the head, which takes care of memory ordering
      78             :  * issues and should be optimal for the uncontended case. Note the tail must be
      79             :  * in the high part, because a wide xadd increment of the low part would carry
      80             :  * up and contaminate the high part.
      81             :  */
      82             : static __always_inline void arch_spin_lock(arch_spinlock_t *lock)
      83             : {
      84             :         register struct __raw_tickets inc = { .tail = TICKET_LOCK_INC };
      85             : 
      86             :         inc = xadd(&lock->tickets, inc);
      87             :         if (likely(inc.head == inc.tail))
      88             :                 goto out;
      89             : 
      90             :         inc.tail &= ~TICKET_SLOWPATH_FLAG;
      91             :         for (;;) {
      92             :                 unsigned count = SPIN_THRESHOLD;
      93             : 
      94             :                 do {
      95             :                         if (ACCESS_ONCE(lock->tickets.head) == inc.tail)
      96             :                                 goto out;
      97             :                         cpu_relax();
      98             :                 } while (--count);
      99             :                 __ticket_lock_spinning(lock, inc.tail);
     100             :         }
     101             : out:    barrier();      /* make sure nothing creeps before the lock is taken */
     102             : }
     103             : 
     104             : static __always_inline int arch_spin_trylock(arch_spinlock_t *lock)
     105             : {
     106             :         arch_spinlock_t old, new;
     107             : 
     108             :         old.tickets = ACCESS_ONCE(lock->tickets);
     109             :         if (old.tickets.head != (old.tickets.tail & ~TICKET_SLOWPATH_FLAG))
     110             :                 return 0;
     111             : 
     112             :         new.head_tail = old.head_tail + (TICKET_LOCK_INC << TICKET_SHIFT);
     113             : 
     114             :         /* cmpxchg is a full barrier, so nothing can move before it */
     115             :         return cmpxchg(&lock->head_tail, old.head_tail, new.head_tail) == old.head_tail;
     116             : }
     117             : 
     118             : static inline void __ticket_unlock_slowpath(arch_spinlock_t *lock,
     119             :                                             arch_spinlock_t old)
     120             : {
     121             :         arch_spinlock_t new;
     122             : 
     123             :         BUILD_BUG_ON(((__ticket_t)NR_CPUS) != NR_CPUS);
     124             : 
     125             :         /* Perform the unlock on the "before" copy */
     126             :         old.tickets.head += TICKET_LOCK_INC;
     127             : 
     128             :         /* Clear the slowpath flag */
     129             :         new.head_tail = old.head_tail & ~(TICKET_SLOWPATH_FLAG << TICKET_SHIFT);
     130             : 
     131             :         /*
     132             :          * If the lock is uncontended, clear the flag - use cmpxchg in
     133             :          * case it changes behind our back though.
     134             :          */
     135             :         if (new.tickets.head != new.tickets.tail ||
     136             :             cmpxchg(&lock->head_tail, old.head_tail,
     137             :                                         new.head_tail) != old.head_tail) {
     138             :                 /*
     139             :                  * Lock still has someone queued for it, so wake up an
     140             :                  * appropriate waiter.
     141             :                  */
     142             :                 __ticket_unlock_kick(lock, old.tickets.head);
     143             :         }
     144             : }
     145             : 
     146             : static __always_inline void arch_spin_unlock(arch_spinlock_t *lock)
     147             : {
     148             :         if (TICKET_SLOWPATH_FLAG &&
     149             :             static_key_false(&paravirt_ticketlocks_enabled)) {
     150             :                 arch_spinlock_t prev;
     151             : 
     152             :                 prev = *lock;
     153             :                 add_smp(&lock->tickets.head, TICKET_LOCK_INC);
     154             : 
     155             :                 /* add_smp() is a full mb() */
     156             : 
     157             :                 if (unlikely(lock->tickets.tail & TICKET_SLOWPATH_FLAG))
     158             :                         __ticket_unlock_slowpath(lock, prev);
     159             :         } else
     160    23956349 :                 __add(&lock->tickets.head, TICKET_LOCK_INC, UNLOCK_LOCK_PREFIX);
     161             : }
     162             : 
     163             : static inline int arch_spin_is_locked(arch_spinlock_t *lock)
     164             : {
     165      584663 :         struct __raw_tickets tmp = ACCESS_ONCE(lock->tickets);
     166             : 
     167      584663 :         return tmp.tail != tmp.head;
     168             : }
     169             : 
     170             : static inline int arch_spin_is_contended(arch_spinlock_t *lock)
     171             : {
     172             :         struct __raw_tickets tmp = ACCESS_ONCE(lock->tickets);
     173             : 
     174             :         return (__ticket_t)(tmp.tail - tmp.head) > TICKET_LOCK_INC;
     175             : }
     176             : #define arch_spin_is_contended  arch_spin_is_contended
     177             : 
     178             : static __always_inline void arch_spin_lock_flags(arch_spinlock_t *lock,
     179             :                                                   unsigned long flags)
     180             : {
     181             :         arch_spin_lock(lock);
     182             : }
     183             : 
     184             : static inline void arch_spin_unlock_wait(arch_spinlock_t *lock)
     185             : {
     186             :         while (arch_spin_is_locked(lock))
     187             :                 cpu_relax();
     188             : }
     189             : 
     190             : #ifndef CONFIG_QUEUE_RWLOCK
     191             : /*
     192             :  * Read-write spinlocks, allowing multiple readers
     193             :  * but only one writer.
     194             :  *
     195             :  * NOTE! it is quite common to have readers in interrupts
     196             :  * but no interrupt writers. For those circumstances we
     197             :  * can "mix" irq-safe locks - any writer needs to get a
     198             :  * irq-safe write-lock, but readers can get non-irqsafe
     199             :  * read-locks.
     200             :  *
     201             :  * On x86, we implement read-write locks as a 32-bit counter
     202             :  * with the high bit (sign) being the "contended" bit.
     203             :  */
     204             : 
     205             : /**
     206             :  * read_can_lock - would read_trylock() succeed?
     207             :  * @lock: the rwlock in question.
     208             :  */
     209             : static inline int arch_read_can_lock(arch_rwlock_t *lock)
     210             : {
     211             :         return lock->lock > 0;
     212             : }
     213             : 
     214             : /**
     215             :  * write_can_lock - would write_trylock() succeed?
     216             :  * @lock: the rwlock in question.
     217             :  */
     218             : static inline int arch_write_can_lock(arch_rwlock_t *lock)
     219             : {
     220             :         return lock->write == WRITE_LOCK_CMP;
     221             : }
     222             : 
     223             : static inline void arch_read_lock(arch_rwlock_t *rw)
     224             : {
     225             :         asm volatile(LOCK_PREFIX READ_LOCK_SIZE(dec) " (%0)\n\t"
     226             :                      "jns 1f\n"
     227             :                      "call __read_lock_failed\n\t"
     228             :                      "1:\n"
     229             :                      ::LOCK_PTR_REG (rw) : "memory");
     230             : }
     231             : 
     232             : static inline void arch_write_lock(arch_rwlock_t *rw)
     233             : {
     234             :         asm volatile(LOCK_PREFIX WRITE_LOCK_SUB(%1) "(%0)\n\t"
     235             :                      "jz 1f\n"
     236             :                      "call __write_lock_failed\n\t"
     237             :                      "1:\n"
     238             :                      ::LOCK_PTR_REG (&rw->write), "i" (RW_LOCK_BIAS)
     239             :                      : "memory");
     240             : }
     241             : 
     242             : static inline int arch_read_trylock(arch_rwlock_t *lock)
     243             : {
     244             :         READ_LOCK_ATOMIC(t) *count = (READ_LOCK_ATOMIC(t) *)lock;
     245             : 
     246             :         if (READ_LOCK_ATOMIC(dec_return)(count) >= 0)
     247             :                 return 1;
     248             :         READ_LOCK_ATOMIC(inc)(count);
     249             :         return 0;
     250             : }
     251             : 
     252             : static inline int arch_write_trylock(arch_rwlock_t *lock)
     253             : {
     254             :         atomic_t *count = (atomic_t *)&lock->write;
     255             : 
     256             :         if (atomic_sub_and_test(WRITE_LOCK_CMP, count))
     257             :                 return 1;
     258             :         atomic_add(WRITE_LOCK_CMP, count);
     259             :         return 0;
     260             : }
     261             : 
     262             : static inline void arch_read_unlock(arch_rwlock_t *rw)
     263             : {
     264             :         asm volatile(LOCK_PREFIX READ_LOCK_SIZE(inc) " %0"
     265             :                      :"+m" (rw->lock) : : "memory");
     266             : }
     267             : 
     268             : static inline void arch_write_unlock(arch_rwlock_t *rw)
     269             : {
     270             :         asm volatile(LOCK_PREFIX WRITE_LOCK_ADD(%1) "%0"
     271             :                      : "+m" (rw->write) : "i" (RW_LOCK_BIAS) : "memory");
     272             : }
     273             : #else
     274             : #include <asm/qrwlock.h>
     275             : #endif /* CONFIG_QUEUE_RWLOCK */
     276             : 
     277             : #define arch_read_lock_flags(lock, flags) arch_read_lock(lock)
     278             : #define arch_write_lock_flags(lock, flags) arch_write_lock(lock)
     279             : 
     280             : #undef READ_LOCK_SIZE
     281             : #undef READ_LOCK_ATOMIC
     282             : #undef WRITE_LOCK_ADD
     283             : #undef WRITE_LOCK_SUB
     284             : #undef WRITE_LOCK_CMP
     285             : 
     286             : #define arch_spin_relax(lock)   cpu_relax()
     287             : #define arch_read_relax(lock)   cpu_relax()
     288             : #define arch_write_relax(lock)  cpu_relax()
     289             : 
     290             : #endif /* _ASM_X86_SPINLOCK_H */

Generated by: LCOV version 1.10