Line data Source code
1 : /*
2 : * Copyright (C) 2011 Fujitsu. All rights reserved.
3 : * Written by Miao Xie <miaox@cn.fujitsu.com>
4 : *
5 : * This program is free software; you can redistribute it and/or
6 : * modify it under the terms of the GNU General Public
7 : * License v2 as published by the Free Software Foundation.
8 : *
9 : * This program is distributed in the hope that it will be useful,
10 : * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 : * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 : * General Public License for more details.
13 : *
14 : * You should have received a copy of the GNU General Public
15 : * License along with this program; if not, write to the
16 : * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 : * Boston, MA 021110-1307, USA.
18 : */
19 :
20 : #include <linux/slab.h>
21 : #include "delayed-inode.h"
22 : #include "disk-io.h"
23 : #include "transaction.h"
24 : #include "ctree.h"
25 :
26 : #define BTRFS_DELAYED_WRITEBACK 512
27 : #define BTRFS_DELAYED_BACKGROUND 128
28 : #define BTRFS_DELAYED_BATCH 16
29 :
30 : static struct kmem_cache *delayed_node_cache;
31 :
32 0 : int __init btrfs_delayed_inode_init(void)
33 : {
34 0 : delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
35 : sizeof(struct btrfs_delayed_node),
36 : 0,
37 : SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
38 : NULL);
39 0 : if (!delayed_node_cache)
40 : return -ENOMEM;
41 0 : return 0;
42 : }
43 :
44 0 : void btrfs_delayed_inode_exit(void)
45 : {
46 0 : if (delayed_node_cache)
47 0 : kmem_cache_destroy(delayed_node_cache);
48 0 : }
49 :
50 22329 : static inline void btrfs_init_delayed_node(
51 : struct btrfs_delayed_node *delayed_node,
52 : struct btrfs_root *root, u64 inode_id)
53 : {
54 22329 : delayed_node->root = root;
55 22329 : delayed_node->inode_id = inode_id;
56 : atomic_set(&delayed_node->refs, 0);
57 22329 : delayed_node->count = 0;
58 22329 : delayed_node->flags = 0;
59 22329 : delayed_node->ins_root = RB_ROOT;
60 22329 : delayed_node->del_root = RB_ROOT;
61 22329 : mutex_init(&delayed_node->mutex);
62 22328 : delayed_node->index_cnt = 0;
63 22328 : INIT_LIST_HEAD(&delayed_node->n_list);
64 22328 : INIT_LIST_HEAD(&delayed_node->p_list);
65 22328 : delayed_node->bytes_reserved = 0;
66 22328 : memset(&delayed_node->inode_item, 0, sizeof(delayed_node->inode_item));
67 22328 : }
68 :
69 : static inline int btrfs_is_continuous_delayed_item(
70 : struct btrfs_delayed_item *item1,
71 : struct btrfs_delayed_item *item2)
72 : {
73 39132 : if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
74 39132 : item1->key.objectid == item2->key.objectid &&
75 39132 : item1->key.type == item2->key.type &&
76 19566 : item1->key.offset + 1 == item2->key.offset)
77 : return 1;
78 : return 0;
79 : }
80 :
81 : static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
82 : struct btrfs_root *root)
83 : {
84 143294 : return root->fs_info->delayed_root;
85 : }
86 :
87 237888 : static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
88 : {
89 : struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
90 237888 : struct btrfs_root *root = btrfs_inode->root;
91 : u64 ino = btrfs_ino(inode);
92 : struct btrfs_delayed_node *node;
93 :
94 237888 : node = ACCESS_ONCE(btrfs_inode->delayed_node);
95 237888 : if (node) {
96 209201 : atomic_inc(&node->refs);
97 209197 : return node;
98 : }
99 :
100 : spin_lock(&root->inode_lock);
101 28687 : node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
102 28687 : if (node) {
103 0 : if (btrfs_inode->delayed_node) {
104 0 : atomic_inc(&node->refs); /* can be accessed */
105 0 : BUG_ON(btrfs_inode->delayed_node != node);
106 : spin_unlock(&root->inode_lock);
107 0 : return node;
108 : }
109 0 : btrfs_inode->delayed_node = node;
110 : /* can be accessed and cached in the inode */
111 0 : atomic_add(2, &node->refs);
112 : spin_unlock(&root->inode_lock);
113 0 : return node;
114 : }
115 : spin_unlock(&root->inode_lock);
116 :
117 28687 : return NULL;
118 : }
119 :
120 : /* Will return either the node or PTR_ERR(-ENOMEM) */
121 195283 : static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
122 : struct inode *inode)
123 : {
124 : struct btrfs_delayed_node *node;
125 : struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
126 195283 : struct btrfs_root *root = btrfs_inode->root;
127 : u64 ino = btrfs_ino(inode);
128 : int ret;
129 :
130 : again:
131 195283 : node = btrfs_get_delayed_node(inode);
132 195278 : if (node)
133 : return node;
134 :
135 22329 : node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
136 22329 : if (!node)
137 : return ERR_PTR(-ENOMEM);
138 22329 : btrfs_init_delayed_node(node, root, ino);
139 :
140 : /* cached in the btrfs inode and can be accessed */
141 22329 : atomic_add(2, &node->refs);
142 :
143 22329 : ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
144 22329 : if (ret) {
145 0 : kmem_cache_free(delayed_node_cache, node);
146 0 : return ERR_PTR(ret);
147 : }
148 :
149 : spin_lock(&root->inode_lock);
150 22329 : ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
151 22329 : if (ret == -EEXIST) {
152 : spin_unlock(&root->inode_lock);
153 0 : kmem_cache_free(delayed_node_cache, node);
154 : radix_tree_preload_end();
155 : goto again;
156 : }
157 22329 : btrfs_inode->delayed_node = node;
158 : spin_unlock(&root->inode_lock);
159 : radix_tree_preload_end();
160 :
161 22329 : return node;
162 : }
163 :
164 : /*
165 : * Call it when holding delayed_node->mutex
166 : *
167 : * If mod = 1, add this node into the prepared list.
168 : */
169 196450 : static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
170 : struct btrfs_delayed_node *node,
171 : int mod)
172 : {
173 : spin_lock(&root->lock);
174 196453 : if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
175 274566 : if (!list_empty(&node->p_list))
176 137281 : list_move_tail(&node->p_list, &root->prepare_list);
177 2 : else if (mod)
178 1 : list_add_tail(&node->p_list, &root->prepare_list);
179 : } else {
180 59170 : list_add_tail(&node->n_list, &root->node_list);
181 59170 : list_add_tail(&node->p_list, &root->prepare_list);
182 59170 : atomic_inc(&node->refs); /* inserted into list */
183 59170 : root->nodes++;
184 : set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
185 : }
186 : spin_unlock(&root->lock);
187 196453 : }
188 :
189 : /* Call it when holding delayed_node->mutex */
190 87366 : static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
191 : struct btrfs_delayed_node *node)
192 : {
193 : spin_lock(&root->lock);
194 87368 : if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
195 59180 : root->nodes--;
196 59180 : atomic_dec(&node->refs); /* not in the list */
197 59180 : list_del_init(&node->n_list);
198 118360 : if (!list_empty(&node->p_list))
199 : list_del_init(&node->p_list);
200 : clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
201 : }
202 : spin_unlock(&root->lock);
203 87368 : }
204 :
205 8765 : static struct btrfs_delayed_node *btrfs_first_delayed_node(
206 : struct btrfs_delayed_root *delayed_root)
207 : {
208 : struct list_head *p;
209 : struct btrfs_delayed_node *node = NULL;
210 :
211 : spin_lock(&delayed_root->lock);
212 17530 : if (list_empty(&delayed_root->node_list))
213 : goto out;
214 :
215 : p = delayed_root->node_list.next;
216 1535 : node = list_entry(p, struct btrfs_delayed_node, n_list);
217 1535 : atomic_inc(&node->refs);
218 : out:
219 : spin_unlock(&delayed_root->lock);
220 :
221 8765 : return node;
222 : }
223 :
224 25773 : static struct btrfs_delayed_node *btrfs_next_delayed_node(
225 : struct btrfs_delayed_node *node)
226 : {
227 : struct btrfs_delayed_root *delayed_root;
228 : struct list_head *p;
229 : struct btrfs_delayed_node *next = NULL;
230 :
231 25773 : delayed_root = node->root->fs_info->delayed_root;
232 : spin_lock(&delayed_root->lock);
233 25773 : if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
234 : /* not in the list */
235 2 : if (list_empty(&delayed_root->node_list))
236 : goto out;
237 : p = delayed_root->node_list.next;
238 25772 : } else if (list_is_last(&node->n_list, &delayed_root->node_list))
239 : goto out;
240 : else
241 : p = node->n_list.next;
242 :
243 24254 : next = list_entry(p, struct btrfs_delayed_node, n_list);
244 24254 : atomic_inc(&next->refs);
245 : out:
246 : spin_unlock(&delayed_root->lock);
247 :
248 25773 : return next;
249 : }
250 :
251 283766 : static void __btrfs_release_delayed_node(
252 : struct btrfs_delayed_node *delayed_node,
253 : int mod)
254 : {
255 : struct btrfs_delayed_root *delayed_root;
256 :
257 283766 : if (!delayed_node)
258 283820 : return;
259 :
260 283766 : delayed_root = delayed_node->root->fs_info->delayed_root;
261 :
262 283766 : mutex_lock(&delayed_node->mutex);
263 283818 : if (delayed_node->count)
264 196452 : btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
265 : else
266 87366 : btrfs_dequeue_delayed_node(delayed_root, delayed_node);
267 283821 : mutex_unlock(&delayed_node->mutex);
268 :
269 567638 : if (atomic_dec_and_test(&delayed_node->refs)) {
270 : bool free = false;
271 22322 : struct btrfs_root *root = delayed_node->root;
272 : spin_lock(&root->inode_lock);
273 22322 : if (atomic_read(&delayed_node->refs) == 0) {
274 22322 : radix_tree_delete(&root->delayed_nodes_tree,
275 22322 : delayed_node->inode_id);
276 : free = true;
277 : }
278 : spin_unlock(&root->inode_lock);
279 22322 : if (free)
280 22322 : kmem_cache_free(delayed_node_cache, delayed_node);
281 : }
282 : }
283 :
284 : static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
285 : {
286 258567 : __btrfs_release_delayed_node(node, 0);
287 : }
288 :
289 25262 : static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
290 : struct btrfs_delayed_root *delayed_root)
291 : {
292 : struct list_head *p;
293 : struct btrfs_delayed_node *node = NULL;
294 :
295 : spin_lock(&delayed_root->lock);
296 50526 : if (list_empty(&delayed_root->prepare_list))
297 : goto out;
298 :
299 : p = delayed_root->prepare_list.next;
300 : list_del_init(p);
301 25252 : node = list_entry(p, struct btrfs_delayed_node, p_list);
302 25252 : atomic_inc(&node->refs);
303 : out:
304 : spin_unlock(&delayed_root->lock);
305 :
306 25263 : return node;
307 : }
308 :
309 : static inline void btrfs_release_prepared_delayed_node(
310 : struct btrfs_delayed_node *node)
311 : {
312 25200 : __btrfs_release_delayed_node(node, 1);
313 : }
314 :
315 37951 : static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
316 : {
317 : struct btrfs_delayed_item *item;
318 37951 : item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
319 37950 : if (item) {
320 37950 : item->data_len = data_len;
321 37950 : item->ins_or_del = 0;
322 37950 : item->bytes_reserved = 0;
323 37950 : item->delayed_node = NULL;
324 : atomic_set(&item->refs, 1);
325 : }
326 37950 : return item;
327 : }
328 :
329 : /*
330 : * __btrfs_lookup_delayed_item - look up the delayed item by key
331 : * @delayed_node: pointer to the delayed node
332 : * @key: the key to look up
333 : * @prev: used to store the prev item if the right item isn't found
334 : * @next: used to store the next item if the right item isn't found
335 : *
336 : * Note: if we don't find the right item, we will return the prev item and
337 : * the next item.
338 : */
339 12323 : static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
340 : struct rb_root *root,
341 : struct btrfs_key *key,
342 : struct btrfs_delayed_item **prev,
343 : struct btrfs_delayed_item **next)
344 : {
345 : struct rb_node *node, *prev_node = NULL;
346 : struct btrfs_delayed_item *delayed_item = NULL;
347 : int ret = 0;
348 :
349 12323 : node = root->rb_node;
350 :
351 26863 : while (node) {
352 : delayed_item = rb_entry(node, struct btrfs_delayed_item,
353 : rb_node);
354 : prev_node = node;
355 3090 : ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
356 3090 : if (ret < 0)
357 433 : node = node->rb_right;
358 2657 : else if (ret > 0)
359 1784 : node = node->rb_left;
360 : else
361 : return delayed_item;
362 : }
363 :
364 11450 : if (prev) {
365 0 : if (!prev_node)
366 0 : *prev = NULL;
367 0 : else if (ret < 0)
368 0 : *prev = delayed_item;
369 0 : else if ((node = rb_prev(prev_node)) != NULL) {
370 0 : *prev = rb_entry(node, struct btrfs_delayed_item,
371 : rb_node);
372 : } else
373 0 : *prev = NULL;
374 : }
375 :
376 11450 : if (next) {
377 0 : if (!prev_node)
378 0 : *next = NULL;
379 0 : else if (ret > 0)
380 0 : *next = delayed_item;
381 0 : else if ((node = rb_next(prev_node)) != NULL) {
382 0 : *next = rb_entry(node, struct btrfs_delayed_item,
383 : rb_node);
384 : } else
385 0 : *next = NULL;
386 : }
387 : return NULL;
388 : }
389 :
390 : static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
391 : struct btrfs_delayed_node *delayed_node,
392 : struct btrfs_key *key)
393 : {
394 : struct btrfs_delayed_item *item;
395 :
396 12323 : item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
397 : NULL, NULL);
398 : return item;
399 : }
400 :
401 37950 : static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
402 : struct btrfs_delayed_item *ins,
403 : int action)
404 : {
405 : struct rb_node **p, *node;
406 : struct rb_node *parent_node = NULL;
407 : struct rb_root *root;
408 : struct btrfs_delayed_item *item;
409 : int cmp;
410 :
411 37950 : if (action == BTRFS_DELAYED_INSERTION_ITEM)
412 26500 : root = &delayed_node->ins_root;
413 11450 : else if (action == BTRFS_DELAYED_DELETION_ITEM)
414 11450 : root = &delayed_node->del_root;
415 : else
416 0 : BUG();
417 37950 : p = &root->rb_node;
418 37950 : node = &ins->rb_node;
419 :
420 228103 : while (*p) {
421 : parent_node = *p;
422 : item = rb_entry(parent_node, struct btrfs_delayed_item,
423 : rb_node);
424 :
425 152203 : cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
426 152203 : if (cmp < 0)
427 151902 : p = &(*p)->rb_right;
428 301 : else if (cmp > 0)
429 301 : p = &(*p)->rb_left;
430 : else
431 : return -EEXIST;
432 : }
433 :
434 : rb_link_node(node, parent_node, p);
435 37950 : rb_insert_color(node, root);
436 37950 : ins->delayed_node = delayed_node;
437 37950 : ins->ins_or_del = action;
438 :
439 37950 : if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
440 26500 : action == BTRFS_DELAYED_INSERTION_ITEM &&
441 26500 : ins->key.offset >= delayed_node->index_cnt)
442 26500 : delayed_node->index_cnt = ins->key.offset + 1;
443 :
444 37950 : delayed_node->count++;
445 37950 : atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
446 37951 : return 0;
447 : }
448 :
449 : static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
450 : struct btrfs_delayed_item *item)
451 : {
452 26501 : return __btrfs_add_delayed_item(node, item,
453 : BTRFS_DELAYED_INSERTION_ITEM);
454 : }
455 :
456 : static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
457 : struct btrfs_delayed_item *item)
458 : {
459 11450 : return __btrfs_add_delayed_item(node, item,
460 : BTRFS_DELAYED_DELETION_ITEM);
461 : }
462 :
463 103387 : static void finish_one_item(struct btrfs_delayed_root *delayed_root)
464 : {
465 103387 : int seq = atomic_inc_return(&delayed_root->items_seq);
466 206766 : if ((atomic_dec_return(&delayed_root->items) <
467 103920 : BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
468 : waitqueue_active(&delayed_root->wait))
469 12 : wake_up(&delayed_root->wait);
470 103381 : }
471 :
472 37951 : static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
473 : {
474 : struct rb_root *root;
475 : struct btrfs_delayed_root *delayed_root;
476 :
477 37951 : delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
478 :
479 37951 : BUG_ON(!delayed_root);
480 37951 : BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
481 : delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
482 :
483 37951 : if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
484 26501 : root = &delayed_item->delayed_node->ins_root;
485 : else
486 11450 : root = &delayed_item->delayed_node->del_root;
487 :
488 37951 : rb_erase(&delayed_item->rb_node, root);
489 37951 : delayed_item->delayed_node->count--;
490 :
491 37951 : finish_one_item(delayed_root);
492 37952 : }
493 :
494 37951 : static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
495 : {
496 37951 : if (item) {
497 37951 : __btrfs_remove_delayed_item(item);
498 75904 : if (atomic_dec_and_test(&item->refs))
499 37952 : kfree(item);
500 : }
501 37952 : }
502 :
503 : static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
504 : struct btrfs_delayed_node *delayed_node)
505 : {
506 : struct rb_node *p;
507 : struct btrfs_delayed_item *item = NULL;
508 :
509 89798 : p = rb_first(&delayed_node->ins_root);
510 89799 : if (p)
511 : item = rb_entry(p, struct btrfs_delayed_item, rb_node);
512 :
513 : return item;
514 : }
515 :
516 : static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
517 : struct btrfs_delayed_node *delayed_node)
518 : {
519 : struct rb_node *p;
520 : struct btrfs_delayed_item *item = NULL;
521 :
522 82832 : p = rb_first(&delayed_node->del_root);
523 82832 : if (p)
524 : item = rb_entry(p, struct btrfs_delayed_item, rb_node);
525 :
526 : return item;
527 : }
528 :
529 : static struct btrfs_delayed_item *__btrfs_next_delayed_item(
530 : struct btrfs_delayed_item *item)
531 : {
532 : struct rb_node *p;
533 : struct btrfs_delayed_item *next = NULL;
534 :
535 38241 : p = rb_next(&item->rb_node);
536 38241 : if (p)
537 : next = rb_entry(p, struct btrfs_delayed_item, rb_node);
538 :
539 : return next;
540 : }
541 :
542 37947 : static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
543 37947 : struct btrfs_root *root,
544 : struct btrfs_delayed_item *item)
545 : {
546 : struct btrfs_block_rsv *src_rsv;
547 : struct btrfs_block_rsv *dst_rsv;
548 : u64 num_bytes;
549 : int ret;
550 :
551 37947 : if (!trans->bytes_reserved)
552 : return 0;
553 :
554 37947 : src_rsv = trans->block_rsv;
555 37947 : dst_rsv = &root->fs_info->delayed_block_rsv;
556 :
557 : num_bytes = btrfs_calc_trans_metadata_size(root, 1);
558 37947 : ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
559 37951 : if (!ret) {
560 37951 : trace_btrfs_space_reservation(root->fs_info, "delayed_item",
561 : item->key.objectid,
562 : num_bytes, 1);
563 37951 : item->bytes_reserved = num_bytes;
564 : }
565 :
566 : return ret;
567 : }
568 :
569 37951 : static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
570 : struct btrfs_delayed_item *item)
571 : {
572 : struct btrfs_block_rsv *rsv;
573 :
574 37951 : if (!item->bytes_reserved)
575 37951 : return;
576 :
577 37951 : rsv = &root->fs_info->delayed_block_rsv;
578 37951 : trace_btrfs_space_reservation(root->fs_info, "delayed_item",
579 : item->key.objectid, item->bytes_reserved,
580 : 0);
581 37951 : btrfs_block_rsv_release(root, rsv,
582 : item->bytes_reserved);
583 : }
584 :
585 59172 : static int btrfs_delayed_inode_reserve_metadata(
586 : struct btrfs_trans_handle *trans,
587 59172 : struct btrfs_root *root,
588 : struct inode *inode,
589 : struct btrfs_delayed_node *node)
590 : {
591 : struct btrfs_block_rsv *src_rsv;
592 : struct btrfs_block_rsv *dst_rsv;
593 : u64 num_bytes;
594 : int ret;
595 : bool release = false;
596 :
597 59172 : src_rsv = trans->block_rsv;
598 59172 : dst_rsv = &root->fs_info->delayed_block_rsv;
599 :
600 : num_bytes = btrfs_calc_trans_metadata_size(root, 1);
601 :
602 : /*
603 : * btrfs_dirty_inode will update the inode under btrfs_join_transaction
604 : * which doesn't reserve space for speed. This is a problem since we
605 : * still need to reserve space for this update, so try to reserve the
606 : * space.
607 : *
608 : * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
609 : * we're accounted for.
610 : */
611 72197 : if (!src_rsv || (!trans->bytes_reserved &&
612 13025 : src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
613 4797 : ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
614 : BTRFS_RESERVE_NO_FLUSH);
615 : /*
616 : * Since we're under a transaction reserve_metadata_bytes could
617 : * try to commit the transaction which will make it return
618 : * EAGAIN to make us stop the transaction we have, so return
619 : * ENOSPC instead so that btrfs_dirty_inode knows what to do.
620 : */
621 4797 : if (ret == -EAGAIN)
622 : ret = -ENOSPC;
623 4797 : if (!ret) {
624 4797 : node->bytes_reserved = num_bytes;
625 4797 : trace_btrfs_space_reservation(root->fs_info,
626 : "delayed_inode",
627 : btrfs_ino(inode),
628 : num_bytes, 1);
629 : }
630 : return ret;
631 54375 : } else if (src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
632 : spin_lock(&BTRFS_I(inode)->lock);
633 13025 : if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
634 13025 : &BTRFS_I(inode)->runtime_flags)) {
635 : spin_unlock(&BTRFS_I(inode)->lock);
636 : release = true;
637 : goto migrate;
638 : }
639 : spin_unlock(&BTRFS_I(inode)->lock);
640 :
641 : /* Ok we didn't have space pre-reserved. This shouldn't happen
642 : * too often but it can happen if we do delalloc to an existing
643 : * inode which gets dirtied because of the time update, and then
644 : * isn't touched again until after the transaction commits and
645 : * then we try to write out the data. First try to be nice and
646 : * reserve something strictly for us. If not be a pain and try
647 : * to steal from the delalloc block rsv.
648 : */
649 8 : ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
650 : BTRFS_RESERVE_NO_FLUSH);
651 8 : if (!ret)
652 : goto out;
653 :
654 0 : ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
655 0 : if (!WARN_ON(ret))
656 : goto out;
657 :
658 : /*
659 : * Ok this is a problem, let's just steal from the global rsv
660 : * since this really shouldn't happen that often.
661 : */
662 0 : ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv,
663 : dst_rsv, num_bytes);
664 : goto out;
665 : }
666 :
667 : migrate:
668 54367 : ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
669 :
670 : out:
671 : /*
672 : * Migrate only takes a reservation, it doesn't touch the size of the
673 : * block_rsv. This is to simplify people who don't normally have things
674 : * migrated from their block rsv. If they go to release their
675 : * reservation, that will decrease the size as well, so if migrate
676 : * reduced size we'd end up with a negative size. But for the
677 : * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
678 : * but we could in fact do this reserve/migrate dance several times
679 : * between the time we did the original reservation and we'd clean it
680 : * up. So to take care of this, release the space for the meta
681 : * reservation here. I think it may be time for a documentation page on
682 : * how block rsvs. work.
683 : */
684 54375 : if (!ret) {
685 54375 : trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
686 : btrfs_ino(inode), num_bytes, 1);
687 54375 : node->bytes_reserved = num_bytes;
688 : }
689 :
690 54375 : if (release) {
691 13017 : trace_btrfs_space_reservation(root->fs_info, "delalloc",
692 : btrfs_ino(inode), num_bytes, 0);
693 13017 : btrfs_block_rsv_release(root, src_rsv, num_bytes);
694 : }
695 :
696 : return ret;
697 : }
698 :
699 59158 : static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
700 : struct btrfs_delayed_node *node)
701 : {
702 : struct btrfs_block_rsv *rsv;
703 :
704 59158 : if (!node->bytes_reserved)
705 59180 : return;
706 :
707 59159 : rsv = &root->fs_info->delayed_block_rsv;
708 59159 : trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
709 : node->inode_id, node->bytes_reserved, 0);
710 59160 : btrfs_block_rsv_release(root, rsv,
711 : node->bytes_reserved);
712 59181 : node->bytes_reserved = 0;
713 : }
714 :
715 : /*
716 : * This helper will insert some continuous items into the same leaf according
717 : * to the free space of the leaf.
718 : */
719 2584 : static int btrfs_batch_insert_items(struct btrfs_root *root,
720 : struct btrfs_path *path,
721 : struct btrfs_delayed_item *item)
722 : {
723 16083 : struct btrfs_delayed_item *curr, *next;
724 : int free_space;
725 : int total_data_size = 0, total_size = 0;
726 : struct extent_buffer *leaf;
727 : char *data_ptr;
728 : struct btrfs_key *keys;
729 : u32 *data_size;
730 : struct list_head head;
731 : int slot;
732 : int nitems;
733 : int i;
734 : int ret = 0;
735 :
736 2584 : BUG_ON(!path->nodes[0]);
737 :
738 : leaf = path->nodes[0];
739 2584 : free_space = btrfs_leaf_free_space(root, leaf);
740 : INIT_LIST_HEAD(&head);
741 :
742 : next = item;
743 : nitems = 0;
744 :
745 : /*
746 : * count the number of the continuous items that we can insert in batch
747 : */
748 18991 : while (total_size + next->data_len + sizeof(struct btrfs_item) <=
749 : free_space) {
750 16083 : total_data_size += next->data_len;
751 16083 : total_size += next->data_len + sizeof(struct btrfs_item);
752 16083 : list_add_tail(&next->tree_list, &head);
753 16083 : nitems++;
754 :
755 : curr = next;
756 : next = __btrfs_next_delayed_item(curr);
757 16083 : if (!next)
758 : break;
759 :
760 13861 : if (!btrfs_is_continuous_delayed_item(curr, next))
761 : break;
762 : }
763 :
764 2584 : if (!nitems) {
765 : ret = 0;
766 : goto out;
767 : }
768 :
769 : /*
770 : * we need allocate some memory space, but it might cause the task
771 : * to sleep, so we set all locked nodes in the path to blocking locks
772 : * first.
773 : */
774 2487 : btrfs_set_path_blocking(path);
775 :
776 2487 : keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
777 2487 : if (!keys) {
778 : ret = -ENOMEM;
779 : goto out;
780 : }
781 :
782 : data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
783 2487 : if (!data_size) {
784 : ret = -ENOMEM;
785 : goto error;
786 : }
787 :
788 : /* get keys of all the delayed items */
789 : i = 0;
790 18570 : list_for_each_entry(next, &head, tree_list) {
791 16083 : keys[i] = next->key;
792 16083 : data_size[i] = next->data_len;
793 16083 : i++;
794 : }
795 :
796 : /* reset all the locked nodes in the patch to spinning locks. */
797 2487 : btrfs_clear_path_blocking(path, NULL, 0);
798 :
799 : /* insert the keys of the items */
800 2487 : setup_items_for_insert(root, path, keys, data_size,
801 : total_data_size, total_size, nitems);
802 :
803 : /* insert the dir index items */
804 2487 : slot = path->slots[0];
805 18570 : list_for_each_entry_safe(curr, next, &head, tree_list) {
806 16083 : data_ptr = btrfs_item_ptr(leaf, slot, char);
807 16083 : write_extent_buffer(leaf, &curr->data,
808 : (unsigned long)data_ptr,
809 16083 : curr->data_len);
810 16083 : slot++;
811 :
812 16083 : btrfs_delayed_item_release_metadata(root, curr);
813 :
814 16083 : list_del(&curr->tree_list);
815 16083 : btrfs_release_delayed_item(curr);
816 : }
817 :
818 : error:
819 2487 : kfree(data_size);
820 2487 : kfree(keys);
821 : out:
822 2584 : return ret;
823 : }
824 :
825 : /*
826 : * This helper can just do simple insertion that needn't extend item for new
827 : * data, such as directory name index insertion, inode insertion.
828 : */
829 9546 : static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
830 : struct btrfs_root *root,
831 : struct btrfs_path *path,
832 9546 : struct btrfs_delayed_item *delayed_item)
833 : {
834 : struct extent_buffer *leaf;
835 : char *ptr;
836 : int ret;
837 :
838 9546 : ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
839 : delayed_item->data_len);
840 9546 : if (ret < 0 && ret != -EEXIST)
841 : return ret;
842 :
843 9546 : leaf = path->nodes[0];
844 :
845 19092 : ptr = btrfs_item_ptr(leaf, path->slots[0], char);
846 :
847 9546 : write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
848 9546 : delayed_item->data_len);
849 9546 : btrfs_mark_buffer_dirty(leaf);
850 :
851 9546 : btrfs_delayed_item_release_metadata(root, delayed_item);
852 9546 : return 0;
853 : }
854 :
855 : /*
856 : * we insert an item first, then if there are some continuous items, we try
857 : * to insert those items into the same leaf.
858 : */
859 52379 : static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
860 : struct btrfs_path *path,
861 : struct btrfs_root *root,
862 : struct btrfs_delayed_node *node)
863 : {
864 : struct btrfs_delayed_item *curr, *prev;
865 : int ret = 0;
866 :
867 : do_again:
868 61925 : mutex_lock(&node->mutex);
869 : curr = __btrfs_first_delayed_insertion_item(node);
870 61933 : if (!curr)
871 : goto insert_end;
872 :
873 9546 : ret = btrfs_insert_delayed_item(trans, root, path, curr);
874 9546 : if (ret < 0) {
875 0 : btrfs_release_path(path);
876 0 : goto insert_end;
877 : }
878 :
879 : prev = curr;
880 : curr = __btrfs_next_delayed_item(prev);
881 12210 : if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
882 : /* insert the continuous items into the same leaf */
883 2584 : path->slots[0]++;
884 2584 : btrfs_batch_insert_items(root, path, curr);
885 : }
886 9546 : btrfs_release_delayed_item(prev);
887 9546 : btrfs_mark_buffer_dirty(path->nodes[0]);
888 :
889 9546 : btrfs_release_path(path);
890 9546 : mutex_unlock(&node->mutex);
891 9546 : goto do_again;
892 :
893 : insert_end:
894 52387 : mutex_unlock(&node->mutex);
895 52391 : return ret;
896 : }
897 :
898 2575 : static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
899 : struct btrfs_root *root,
900 : struct btrfs_path *path,
901 : struct btrfs_delayed_item *item)
902 : {
903 5345 : struct btrfs_delayed_item *curr, *next;
904 2575 : struct extent_buffer *leaf;
905 : struct btrfs_key key;
906 : struct list_head head;
907 : int nitems, i, last_item;
908 : int ret = 0;
909 :
910 2575 : BUG_ON(!path->nodes[0]);
911 :
912 : leaf = path->nodes[0];
913 :
914 2575 : i = path->slots[0];
915 2575 : last_item = btrfs_header_nritems(leaf) - 1;
916 2575 : if (i > last_item)
917 : return -ENOENT; /* FIXME: Is errno suitable? */
918 :
919 : next = item;
920 : INIT_LIST_HEAD(&head);
921 2575 : btrfs_item_key_to_cpu(leaf, &key, i);
922 : nitems = 0;
923 : /*
924 : * count the number of the dir index items that we can delete in batch
925 : */
926 7920 : while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
927 5345 : list_add_tail(&next->tree_list, &head);
928 5345 : nitems++;
929 :
930 : curr = next;
931 : next = __btrfs_next_delayed_item(curr);
932 5345 : if (!next)
933 : break;
934 :
935 3041 : if (!btrfs_is_continuous_delayed_item(curr, next))
936 : break;
937 :
938 2783 : i++;
939 2783 : if (i > last_item)
940 : break;
941 2770 : btrfs_item_key_to_cpu(leaf, &key, i);
942 : }
943 :
944 2575 : if (!nitems)
945 : return 0;
946 :
947 2575 : ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
948 2575 : if (ret)
949 : goto out;
950 :
951 7920 : list_for_each_entry_safe(curr, next, &head, tree_list) {
952 5345 : btrfs_delayed_item_release_metadata(root, curr);
953 5345 : list_del(&curr->tree_list);
954 5345 : btrfs_release_delayed_item(curr);
955 : }
956 :
957 : out:
958 2575 : return ret;
959 : }
960 :
961 52388 : static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
962 : struct btrfs_path *path,
963 : struct btrfs_root *root,
964 : struct btrfs_delayed_node *node)
965 : {
966 : struct btrfs_delayed_item *curr, *prev;
967 : int ret = 0;
968 :
969 : do_again:
970 54963 : mutex_lock(&node->mutex);
971 : curr = __btrfs_first_delayed_deletion_item(node);
972 54966 : if (!curr)
973 : goto delete_fail;
974 :
975 2575 : ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
976 2575 : if (ret < 0)
977 : goto delete_fail;
978 2575 : else if (ret > 0) {
979 : /*
980 : * can't find the item which the node points to, so this node
981 : * is invalid, just drop it.
982 : */
983 : prev = curr;
984 : curr = __btrfs_next_delayed_item(prev);
985 0 : btrfs_release_delayed_item(prev);
986 : ret = 0;
987 0 : btrfs_release_path(path);
988 0 : if (curr) {
989 0 : mutex_unlock(&node->mutex);
990 0 : goto do_again;
991 : } else
992 : goto delete_fail;
993 : }
994 :
995 2575 : btrfs_batch_delete_items(trans, root, path, curr);
996 2575 : btrfs_release_path(path);
997 2575 : mutex_unlock(&node->mutex);
998 2575 : goto do_again;
999 :
1000 : delete_fail:
1001 52391 : btrfs_release_path(path);
1002 52365 : mutex_unlock(&node->mutex);
1003 52393 : return ret;
1004 : }
1005 :
1006 59181 : static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
1007 : {
1008 : struct btrfs_delayed_root *delayed_root;
1009 :
1010 118362 : if (delayed_node &&
1011 : test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1012 59181 : BUG_ON(!delayed_node->root);
1013 : clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1014 59180 : delayed_node->count--;
1015 :
1016 59180 : delayed_root = delayed_node->root->fs_info->delayed_root;
1017 59180 : finish_one_item(delayed_root);
1018 : }
1019 59175 : }
1020 :
1021 6256 : static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
1022 : {
1023 : struct btrfs_delayed_root *delayed_root;
1024 :
1025 : ASSERT(delayed_node->root);
1026 : clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1027 6256 : delayed_node->count--;
1028 :
1029 6256 : delayed_root = delayed_node->root->fs_info->delayed_root;
1030 6256 : finish_one_item(delayed_root);
1031 6256 : }
1032 :
1033 59179 : static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1034 : struct btrfs_root *root,
1035 : struct btrfs_path *path,
1036 59161 : struct btrfs_delayed_node *node)
1037 : {
1038 : struct btrfs_key key;
1039 : struct btrfs_inode_item *inode_item;
1040 6256 : struct extent_buffer *leaf;
1041 : int mod;
1042 : int ret;
1043 :
1044 59179 : key.objectid = node->inode_id;
1045 : btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
1046 59179 : key.offset = 0;
1047 :
1048 59179 : if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1049 : mod = -1;
1050 : else
1051 : mod = 1;
1052 :
1053 59179 : ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1054 59142 : if (ret > 0) {
1055 0 : btrfs_release_path(path);
1056 0 : return -ENOENT;
1057 59142 : } else if (ret < 0) {
1058 : return ret;
1059 : }
1060 :
1061 59142 : leaf = path->nodes[0];
1062 118277 : inode_item = btrfs_item_ptr(leaf, path->slots[0],
1063 : struct btrfs_inode_item);
1064 59135 : write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1065 : sizeof(struct btrfs_inode_item));
1066 59120 : btrfs_mark_buffer_dirty(leaf);
1067 :
1068 59179 : if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1069 : goto no_iref;
1070 :
1071 6256 : path->slots[0]++;
1072 12512 : if (path->slots[0] >= btrfs_header_nritems(leaf))
1073 : goto search;
1074 : again:
1075 6256 : btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1076 6256 : if (key.objectid != node->inode_id)
1077 : goto out;
1078 :
1079 6256 : if (key.type != BTRFS_INODE_REF_KEY &&
1080 : key.type != BTRFS_INODE_EXTREF_KEY)
1081 : goto out;
1082 :
1083 : /*
1084 : * Delayed iref deletion is for the inode who has only one link,
1085 : * so there is only one iref. The case that several irefs are
1086 : * in the same item doesn't exist.
1087 : */
1088 : btrfs_del_item(trans, root, path);
1089 : out:
1090 6256 : btrfs_release_delayed_iref(node);
1091 : no_iref:
1092 59179 : btrfs_release_path(path);
1093 : err_out:
1094 59161 : btrfs_delayed_inode_release_metadata(root, node);
1095 59181 : btrfs_release_delayed_inode(node);
1096 :
1097 59174 : return ret;
1098 :
1099 : search:
1100 151 : btrfs_release_path(path);
1101 :
1102 : btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY);
1103 151 : key.offset = -1;
1104 151 : ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1105 151 : if (ret < 0)
1106 : goto err_out;
1107 : ASSERT(ret);
1108 :
1109 : ret = 0;
1110 151 : leaf = path->nodes[0];
1111 151 : path->slots[0]--;
1112 151 : goto again;
1113 : }
1114 :
1115 52390 : static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1116 : struct btrfs_root *root,
1117 : struct btrfs_path *path,
1118 : struct btrfs_delayed_node *node)
1119 : {
1120 : int ret;
1121 :
1122 52390 : mutex_lock(&node->mutex);
1123 52392 : if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1124 1 : mutex_unlock(&node->mutex);
1125 1 : return 0;
1126 : }
1127 :
1128 52391 : ret = __btrfs_update_delayed_inode(trans, root, path, node);
1129 52385 : mutex_unlock(&node->mutex);
1130 52389 : return ret;
1131 : }
1132 :
1133 : static inline int
1134 52381 : __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1135 : struct btrfs_path *path,
1136 : struct btrfs_delayed_node *node)
1137 : {
1138 : int ret;
1139 :
1140 52381 : ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1141 52389 : if (ret)
1142 : return ret;
1143 :
1144 52389 : ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1145 52392 : if (ret)
1146 : return ret;
1147 :
1148 52390 : ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1149 52390 : return ret;
1150 : }
1151 :
1152 : /*
1153 : * Called when committing the transaction.
1154 : * Returns 0 on success.
1155 : * Returns < 0 on error and returns with an aborted transaction with any
1156 : * outstanding delayed items cleaned up.
1157 : */
1158 6667 : static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1159 6667 : struct btrfs_root *root, int nr)
1160 : {
1161 : struct btrfs_delayed_root *delayed_root;
1162 : struct btrfs_delayed_node *curr_node, *prev_node;
1163 : struct btrfs_path *path;
1164 : struct btrfs_block_rsv *block_rsv;
1165 : int ret = 0;
1166 6667 : bool count = (nr > 0);
1167 :
1168 6667 : if (trans->aborted)
1169 : return -EIO;
1170 :
1171 6667 : path = btrfs_alloc_path();
1172 6667 : if (!path)
1173 : return -ENOMEM;
1174 6667 : path->leave_spinning = 1;
1175 :
1176 6667 : block_rsv = trans->block_rsv;
1177 6667 : trans->block_rsv = &root->fs_info->delayed_block_rsv;
1178 :
1179 : delayed_root = btrfs_get_delayed_root(root);
1180 :
1181 6667 : curr_node = btrfs_first_delayed_node(delayed_root);
1182 39107 : while (curr_node && (!count || (count && nr--))) {
1183 25773 : ret = __btrfs_commit_inode_delayed_items(trans, path,
1184 : curr_node);
1185 25773 : if (ret) {
1186 : btrfs_release_delayed_node(curr_node);
1187 : curr_node = NULL;
1188 0 : btrfs_abort_transaction(trans, root, ret);
1189 0 : break;
1190 : }
1191 :
1192 : prev_node = curr_node;
1193 25773 : curr_node = btrfs_next_delayed_node(curr_node);
1194 : btrfs_release_delayed_node(prev_node);
1195 : }
1196 :
1197 6667 : if (curr_node)
1198 : btrfs_release_delayed_node(curr_node);
1199 6667 : btrfs_free_path(path);
1200 6667 : trans->block_rsv = block_rsv;
1201 :
1202 6667 : return ret;
1203 : }
1204 :
1205 6440 : int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1206 : struct btrfs_root *root)
1207 : {
1208 6440 : return __btrfs_run_delayed_items(trans, root, -1);
1209 : }
1210 :
1211 227 : int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
1212 : struct btrfs_root *root, int nr)
1213 : {
1214 227 : return __btrfs_run_delayed_items(trans, root, nr);
1215 : }
1216 :
1217 1527 : int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1218 : struct inode *inode)
1219 : {
1220 1527 : struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1221 : struct btrfs_path *path;
1222 : struct btrfs_block_rsv *block_rsv;
1223 : int ret;
1224 :
1225 1527 : if (!delayed_node)
1226 : return 0;
1227 :
1228 1527 : mutex_lock(&delayed_node->mutex);
1229 1527 : if (!delayed_node->count) {
1230 159 : mutex_unlock(&delayed_node->mutex);
1231 : btrfs_release_delayed_node(delayed_node);
1232 159 : return 0;
1233 : }
1234 1368 : mutex_unlock(&delayed_node->mutex);
1235 :
1236 1368 : path = btrfs_alloc_path();
1237 1368 : if (!path) {
1238 : btrfs_release_delayed_node(delayed_node);
1239 0 : return -ENOMEM;
1240 : }
1241 1368 : path->leave_spinning = 1;
1242 :
1243 1368 : block_rsv = trans->block_rsv;
1244 1368 : trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1245 :
1246 1368 : ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1247 :
1248 : btrfs_release_delayed_node(delayed_node);
1249 1368 : btrfs_free_path(path);
1250 1368 : trans->block_rsv = block_rsv;
1251 :
1252 1368 : return ret;
1253 : }
1254 :
1255 6907 : int btrfs_commit_inode_delayed_inode(struct inode *inode)
1256 : {
1257 : struct btrfs_trans_handle *trans;
1258 6907 : struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1259 : struct btrfs_path *path;
1260 : struct btrfs_block_rsv *block_rsv;
1261 : int ret;
1262 :
1263 6907 : if (!delayed_node)
1264 : return 0;
1265 :
1266 6793 : mutex_lock(&delayed_node->mutex);
1267 6793 : if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1268 3 : mutex_unlock(&delayed_node->mutex);
1269 : btrfs_release_delayed_node(delayed_node);
1270 3 : return 0;
1271 : }
1272 6790 : mutex_unlock(&delayed_node->mutex);
1273 :
1274 6790 : trans = btrfs_join_transaction(delayed_node->root);
1275 6790 : if (IS_ERR(trans)) {
1276 0 : ret = PTR_ERR(trans);
1277 0 : goto out;
1278 : }
1279 :
1280 6790 : path = btrfs_alloc_path();
1281 6790 : if (!path) {
1282 : ret = -ENOMEM;
1283 : goto trans_out;
1284 : }
1285 6790 : path->leave_spinning = 1;
1286 :
1287 6790 : block_rsv = trans->block_rsv;
1288 6790 : trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1289 :
1290 6790 : mutex_lock(&delayed_node->mutex);
1291 6790 : if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1292 6790 : ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1293 : path, delayed_node);
1294 : else
1295 : ret = 0;
1296 6790 : mutex_unlock(&delayed_node->mutex);
1297 :
1298 6790 : btrfs_free_path(path);
1299 6790 : trans->block_rsv = block_rsv;
1300 : trans_out:
1301 6790 : btrfs_end_transaction(trans, delayed_node->root);
1302 6790 : btrfs_btree_balance_dirty(delayed_node->root);
1303 : out:
1304 : btrfs_release_delayed_node(delayed_node);
1305 :
1306 6790 : return ret;
1307 : }
1308 :
1309 25704 : void btrfs_remove_delayed_node(struct inode *inode)
1310 : {
1311 : struct btrfs_delayed_node *delayed_node;
1312 :
1313 25704 : delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1314 25704 : if (!delayed_node)
1315 25704 : return;
1316 :
1317 22322 : BTRFS_I(inode)->delayed_node = NULL;
1318 : btrfs_release_delayed_node(delayed_node);
1319 : }
1320 :
1321 : struct btrfs_async_delayed_work {
1322 : struct btrfs_delayed_root *delayed_root;
1323 : int nr;
1324 : struct btrfs_work work;
1325 : };
1326 :
1327 1596 : static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1328 : {
1329 : struct btrfs_async_delayed_work *async_work;
1330 : struct btrfs_delayed_root *delayed_root;
1331 : struct btrfs_trans_handle *trans;
1332 : struct btrfs_path *path;
1333 : struct btrfs_delayed_node *delayed_node = NULL;
1334 : struct btrfs_root *root;
1335 : struct btrfs_block_rsv *block_rsv;
1336 : int total_done = 0;
1337 :
1338 1596 : async_work = container_of(work, struct btrfs_async_delayed_work, work);
1339 1596 : delayed_root = async_work->delayed_root;
1340 :
1341 1596 : path = btrfs_alloc_path();
1342 1596 : if (!path)
1343 : goto out;
1344 :
1345 : again:
1346 25464 : if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
1347 : goto free_path;
1348 :
1349 25262 : delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1350 25263 : if (!delayed_node)
1351 : goto free_path;
1352 :
1353 25252 : path->leave_spinning = 1;
1354 25252 : root = delayed_node->root;
1355 :
1356 25252 : trans = btrfs_join_transaction(root);
1357 25244 : if (IS_ERR(trans))
1358 : goto release_path;
1359 :
1360 25244 : block_rsv = trans->block_rsv;
1361 25244 : trans->block_rsv = &root->fs_info->delayed_block_rsv;
1362 :
1363 25244 : __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1364 :
1365 25250 : trans->block_rsv = block_rsv;
1366 25250 : btrfs_end_transaction(trans, root);
1367 25243 : btrfs_btree_balance_dirty_nodelay(root);
1368 :
1369 : release_path:
1370 25236 : btrfs_release_path(path);
1371 25200 : total_done++;
1372 :
1373 : btrfs_release_prepared_delayed_node(delayed_node);
1374 25251 : if (async_work->nr == 0 || total_done < async_work->nr)
1375 : goto again;
1376 :
1377 : free_path:
1378 1596 : btrfs_free_path(path);
1379 : out:
1380 1596 : wake_up(&delayed_root->wait);
1381 1596 : kfree(async_work);
1382 1596 : }
1383 :
1384 :
1385 1596 : static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1386 : struct btrfs_root *root, int nr)
1387 : {
1388 : struct btrfs_async_delayed_work *async_work;
1389 :
1390 1596 : if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1391 : return 0;
1392 :
1393 : async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1394 1596 : if (!async_work)
1395 : return -ENOMEM;
1396 :
1397 1596 : async_work->delayed_root = delayed_root;
1398 1596 : btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
1399 : btrfs_async_run_delayed_root, NULL, NULL);
1400 1596 : async_work->nr = nr;
1401 :
1402 1596 : btrfs_queue_work(root->fs_info->delayed_workers, &async_work->work);
1403 : return 0;
1404 : }
1405 :
1406 2098 : void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
1407 : {
1408 : struct btrfs_delayed_root *delayed_root;
1409 : delayed_root = btrfs_get_delayed_root(root);
1410 2098 : WARN_ON(btrfs_first_delayed_node(delayed_root));
1411 2098 : }
1412 :
1413 : static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1414 : {
1415 : int val = atomic_read(&delayed_root->items_seq);
1416 :
1417 28 : if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1418 : return 1;
1419 :
1420 20 : if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1421 : return 1;
1422 :
1423 : return 0;
1424 : }
1425 :
1426 134529 : void btrfs_balance_delayed_items(struct btrfs_root *root)
1427 : {
1428 : struct btrfs_delayed_root *delayed_root;
1429 :
1430 : delayed_root = btrfs_get_delayed_root(root);
1431 :
1432 134529 : if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1433 : return;
1434 :
1435 1596 : if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1436 : int seq;
1437 : int ret;
1438 :
1439 : seq = atomic_read(&delayed_root->items_seq);
1440 :
1441 8 : ret = btrfs_wq_run_delayed_node(delayed_root, root, 0);
1442 8 : if (ret)
1443 : return;
1444 :
1445 36 : wait_event_interruptible(delayed_root->wait,
1446 : could_end_wait(delayed_root, seq));
1447 : return;
1448 : }
1449 :
1450 1588 : btrfs_wq_run_delayed_node(delayed_root, root, BTRFS_DELAYED_BATCH);
1451 : }
1452 :
1453 : /* Will return 0 or -ENOMEM */
1454 53001 : int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1455 : struct btrfs_root *root, const char *name,
1456 : int name_len, struct inode *dir,
1457 : struct btrfs_disk_key *disk_key, u8 type,
1458 : u64 index)
1459 : {
1460 : struct btrfs_delayed_node *delayed_node;
1461 : struct btrfs_delayed_item *delayed_item;
1462 : struct btrfs_dir_item *dir_item;
1463 : int ret;
1464 :
1465 26501 : delayed_node = btrfs_get_or_create_delayed_node(dir);
1466 26501 : if (IS_ERR(delayed_node))
1467 0 : return PTR_ERR(delayed_node);
1468 :
1469 26501 : delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1470 26500 : if (!delayed_item) {
1471 : ret = -ENOMEM;
1472 : goto release_node;
1473 : }
1474 :
1475 26500 : delayed_item->key.objectid = btrfs_ino(dir);
1476 : btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
1477 26500 : delayed_item->key.offset = index;
1478 :
1479 : dir_item = (struct btrfs_dir_item *)delayed_item->data;
1480 26500 : dir_item->location = *disk_key;
1481 26500 : btrfs_set_stack_dir_transid(dir_item, trans->transid);
1482 : btrfs_set_stack_dir_data_len(dir_item, 0);
1483 26500 : btrfs_set_stack_dir_name_len(dir_item, name_len);
1484 : btrfs_set_stack_dir_type(dir_item, type);
1485 26500 : memcpy((char *)(dir_item + 1), name, name_len);
1486 :
1487 26500 : ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
1488 : /*
1489 : * we have reserved enough space when we start a new transaction,
1490 : * so reserving metadata failure is impossible
1491 : */
1492 26501 : BUG_ON(ret);
1493 :
1494 :
1495 26501 : mutex_lock(&delayed_node->mutex);
1496 : ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1497 26501 : if (unlikely(ret)) {
1498 0 : btrfs_err(root->fs_info, "err add delayed dir index item(name: %.*s) "
1499 : "into the insertion tree of the delayed node"
1500 : "(root id: %llu, inode id: %llu, errno: %d)",
1501 : name_len, name, delayed_node->root->objectid,
1502 : delayed_node->inode_id, ret);
1503 0 : BUG();
1504 : }
1505 26501 : mutex_unlock(&delayed_node->mutex);
1506 :
1507 : release_node:
1508 : btrfs_release_delayed_node(delayed_node);
1509 26501 : return ret;
1510 : }
1511 :
1512 12323 : static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
1513 : struct btrfs_delayed_node *node,
1514 : struct btrfs_key *key)
1515 : {
1516 873 : struct btrfs_delayed_item *item;
1517 :
1518 12323 : mutex_lock(&node->mutex);
1519 : item = __btrfs_lookup_delayed_insertion_item(node, key);
1520 12323 : if (!item) {
1521 11450 : mutex_unlock(&node->mutex);
1522 11450 : return 1;
1523 : }
1524 :
1525 873 : btrfs_delayed_item_release_metadata(root, item);
1526 873 : btrfs_release_delayed_item(item);
1527 873 : mutex_unlock(&node->mutex);
1528 873 : return 0;
1529 : }
1530 :
1531 23773 : int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1532 : struct btrfs_root *root, struct inode *dir,
1533 : u64 index)
1534 : {
1535 : struct btrfs_delayed_node *node;
1536 : struct btrfs_delayed_item *item;
1537 : struct btrfs_key item_key;
1538 : int ret;
1539 :
1540 12323 : node = btrfs_get_or_create_delayed_node(dir);
1541 12323 : if (IS_ERR(node))
1542 0 : return PTR_ERR(node);
1543 :
1544 12323 : item_key.objectid = btrfs_ino(dir);
1545 : btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
1546 12323 : item_key.offset = index;
1547 :
1548 12323 : ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
1549 12323 : if (!ret)
1550 : goto end;
1551 :
1552 11450 : item = btrfs_alloc_delayed_item(0);
1553 11450 : if (!item) {
1554 : ret = -ENOMEM;
1555 : goto end;
1556 : }
1557 :
1558 11450 : item->key = item_key;
1559 :
1560 11450 : ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
1561 : /*
1562 : * we have reserved enough space when we start a new transaction,
1563 : * so reserving metadata failure is impossible.
1564 : */
1565 11450 : BUG_ON(ret);
1566 :
1567 11450 : mutex_lock(&node->mutex);
1568 : ret = __btrfs_add_delayed_deletion_item(node, item);
1569 11450 : if (unlikely(ret)) {
1570 0 : btrfs_err(root->fs_info, "err add delayed dir index item(index: %llu) "
1571 : "into the deletion tree of the delayed node"
1572 : "(root id: %llu, inode id: %llu, errno: %d)",
1573 : index, node->root->objectid, node->inode_id,
1574 : ret);
1575 0 : BUG();
1576 : }
1577 11450 : mutex_unlock(&node->mutex);
1578 : end:
1579 : btrfs_release_delayed_node(node);
1580 12323 : return ret;
1581 : }
1582 :
1583 185 : int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1584 : {
1585 185 : struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1586 :
1587 185 : if (!delayed_node)
1588 : return -ENOENT;
1589 :
1590 : /*
1591 : * Since we have held i_mutex of this directory, it is impossible that
1592 : * a new directory index is added into the delayed node and index_cnt
1593 : * is updated now. So we needn't lock the delayed node.
1594 : */
1595 61 : if (!delayed_node->index_cnt) {
1596 : btrfs_release_delayed_node(delayed_node);
1597 61 : return -EINVAL;
1598 : }
1599 :
1600 0 : BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1601 : btrfs_release_delayed_node(delayed_node);
1602 0 : return 0;
1603 : }
1604 :
1605 22061 : void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
1606 : struct list_head *del_list)
1607 : {
1608 : struct btrfs_delayed_node *delayed_node;
1609 : struct btrfs_delayed_item *item;
1610 :
1611 22061 : delayed_node = btrfs_get_delayed_node(inode);
1612 22061 : if (!delayed_node)
1613 22061 : return;
1614 :
1615 21073 : mutex_lock(&delayed_node->mutex);
1616 : item = __btrfs_first_delayed_insertion_item(delayed_node);
1617 43112 : while (item) {
1618 966 : atomic_inc(&item->refs);
1619 966 : list_add_tail(&item->readdir_list, ins_list);
1620 : item = __btrfs_next_delayed_item(item);
1621 : }
1622 :
1623 : item = __btrfs_first_delayed_deletion_item(delayed_node);
1624 42342 : while (item) {
1625 196 : atomic_inc(&item->refs);
1626 196 : list_add_tail(&item->readdir_list, del_list);
1627 : item = __btrfs_next_delayed_item(item);
1628 : }
1629 21073 : mutex_unlock(&delayed_node->mutex);
1630 : /*
1631 : * This delayed node is still cached in the btrfs inode, so refs
1632 : * must be > 1 now, and we needn't check it is going to be freed
1633 : * or not.
1634 : *
1635 : * Besides that, this function is used to read dir, we do not
1636 : * insert/delete delayed items in this period. So we also needn't
1637 : * requeue or dequeue this delayed node.
1638 : */
1639 21073 : atomic_dec(&delayed_node->refs);
1640 : }
1641 :
1642 22061 : void btrfs_put_delayed_items(struct list_head *ins_list,
1643 : struct list_head *del_list)
1644 : {
1645 : struct btrfs_delayed_item *curr, *next;
1646 :
1647 22061 : list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1648 0 : list_del(&curr->readdir_list);
1649 0 : if (atomic_dec_and_test(&curr->refs))
1650 0 : kfree(curr);
1651 : }
1652 :
1653 22140 : list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1654 79 : list_del(&curr->readdir_list);
1655 158 : if (atomic_dec_and_test(&curr->refs))
1656 0 : kfree(curr);
1657 : }
1658 22061 : }
1659 :
1660 146477 : int btrfs_should_delete_dir_index(struct list_head *del_list,
1661 : u64 index)
1662 : {
1663 : struct btrfs_delayed_item *curr, *next;
1664 : int ret;
1665 :
1666 146477 : if (list_empty(del_list))
1667 : return 0;
1668 :
1669 392 : list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1670 392 : if (curr->key.offset > index)
1671 : break;
1672 :
1673 117 : list_del(&curr->readdir_list);
1674 117 : ret = (curr->key.offset == index);
1675 :
1676 234 : if (atomic_dec_and_test(&curr->refs))
1677 0 : kfree(curr);
1678 :
1679 117 : if (ret)
1680 : return 1;
1681 : else
1682 0 : continue;
1683 : }
1684 : return 0;
1685 : }
1686 :
1687 : /*
1688 : * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1689 : *
1690 : */
1691 22057 : int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1692 : struct list_head *ins_list)
1693 : {
1694 : struct btrfs_dir_item *di;
1695 : struct btrfs_delayed_item *curr, *next;
1696 : struct btrfs_key location;
1697 : char *name;
1698 : int name_len;
1699 : int over = 0;
1700 : unsigned char d_type;
1701 :
1702 22057 : if (list_empty(ins_list))
1703 : return 0;
1704 :
1705 : /*
1706 : * Changing the data of the delayed item is impossible. So
1707 : * we needn't lock them. And we have held i_mutex of the
1708 : * directory, nobody can delete any directory indexes now.
1709 : */
1710 1638 : list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1711 966 : list_del(&curr->readdir_list);
1712 :
1713 966 : if (curr->key.offset < ctx->pos) {
1714 826 : if (atomic_dec_and_test(&curr->refs))
1715 0 : kfree(curr);
1716 413 : continue;
1717 : }
1718 :
1719 553 : ctx->pos = curr->key.offset;
1720 :
1721 : di = (struct btrfs_dir_item *)curr->data;
1722 553 : name = (char *)(di + 1);
1723 553 : name_len = btrfs_stack_dir_name_len(di);
1724 :
1725 553 : d_type = btrfs_filetype_table[di->type];
1726 : btrfs_disk_key_to_cpu(&location, &di->location);
1727 :
1728 553 : over = !dir_emit(ctx, name, name_len,
1729 : location.objectid, d_type);
1730 :
1731 1106 : if (atomic_dec_and_test(&curr->refs))
1732 0 : kfree(curr);
1733 :
1734 553 : if (over)
1735 : return 1;
1736 : }
1737 : return 0;
1738 : }
1739 :
1740 150201 : static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1741 : struct btrfs_inode_item *inode_item,
1742 : struct inode *inode)
1743 : {
1744 : btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1745 : btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1746 150196 : btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1747 150196 : btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1748 150196 : btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1749 150196 : btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1750 150203 : btrfs_set_stack_inode_generation(inode_item,
1751 : BTRFS_I(inode)->generation);
1752 150203 : btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
1753 150203 : btrfs_set_stack_inode_transid(inode_item, trans->transid);
1754 150203 : btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1755 150203 : btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1756 : btrfs_set_stack_inode_block_group(inode_item, 0);
1757 :
1758 150203 : btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
1759 150203 : inode->i_atime.tv_sec);
1760 150203 : btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
1761 150203 : inode->i_atime.tv_nsec);
1762 :
1763 150203 : btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
1764 150203 : inode->i_mtime.tv_sec);
1765 150203 : btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
1766 150203 : inode->i_mtime.tv_nsec);
1767 :
1768 150203 : btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
1769 150203 : inode->i_ctime.tv_sec);
1770 150203 : btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
1771 150203 : inode->i_ctime.tv_nsec);
1772 150203 : }
1773 :
1774 5018 : int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1775 : {
1776 : struct btrfs_delayed_node *delayed_node;
1777 : struct btrfs_inode_item *inode_item;
1778 : struct btrfs_timespec *tspec;
1779 :
1780 5018 : delayed_node = btrfs_get_delayed_node(inode);
1781 5018 : if (!delayed_node)
1782 : return -ENOENT;
1783 :
1784 0 : mutex_lock(&delayed_node->mutex);
1785 0 : if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1786 0 : mutex_unlock(&delayed_node->mutex);
1787 : btrfs_release_delayed_node(delayed_node);
1788 0 : return -ENOENT;
1789 : }
1790 :
1791 0 : inode_item = &delayed_node->inode_item;
1792 :
1793 : i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1794 : i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1795 : btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1796 0 : inode->i_mode = btrfs_stack_inode_mode(inode_item);
1797 0 : set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1798 0 : inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1799 0 : BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1800 0 : inode->i_version = btrfs_stack_inode_sequence(inode_item);
1801 0 : inode->i_rdev = 0;
1802 0 : *rdev = btrfs_stack_inode_rdev(inode_item);
1803 0 : BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1804 :
1805 : tspec = btrfs_inode_atime(inode_item);
1806 0 : inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec);
1807 0 : inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1808 :
1809 : tspec = btrfs_inode_mtime(inode_item);
1810 0 : inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec);
1811 0 : inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1812 :
1813 : tspec = btrfs_inode_ctime(inode_item);
1814 0 : inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec);
1815 0 : inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1816 :
1817 0 : inode->i_generation = BTRFS_I(inode)->generation;
1818 0 : BTRFS_I(inode)->index_cnt = (u64)-1;
1819 :
1820 0 : mutex_unlock(&delayed_node->mutex);
1821 : btrfs_release_delayed_node(delayed_node);
1822 0 : return 0;
1823 : }
1824 :
1825 209375 : int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1826 : struct btrfs_root *root, struct inode *inode)
1827 : {
1828 : struct btrfs_delayed_node *delayed_node;
1829 : int ret = 0;
1830 :
1831 150203 : delayed_node = btrfs_get_or_create_delayed_node(inode);
1832 150199 : if (IS_ERR(delayed_node))
1833 0 : return PTR_ERR(delayed_node);
1834 :
1835 150199 : mutex_lock(&delayed_node->mutex);
1836 150204 : if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1837 91032 : fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1838 91031 : goto release_node;
1839 : }
1840 :
1841 59172 : ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
1842 : delayed_node);
1843 59172 : if (ret)
1844 : goto release_node;
1845 :
1846 59172 : fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1847 : set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1848 59172 : delayed_node->count++;
1849 59172 : atomic_inc(&root->fs_info->delayed_root->items);
1850 : release_node:
1851 150200 : mutex_unlock(&delayed_node->mutex);
1852 : btrfs_release_delayed_node(delayed_node);
1853 150204 : return ret;
1854 : }
1855 :
1856 6256 : int btrfs_delayed_delete_inode_ref(struct inode *inode)
1857 : {
1858 : struct btrfs_delayed_node *delayed_node;
1859 :
1860 6256 : delayed_node = btrfs_get_or_create_delayed_node(inode);
1861 6256 : if (IS_ERR(delayed_node))
1862 0 : return PTR_ERR(delayed_node);
1863 :
1864 : /*
1865 : * We don't reserve space for inode ref deletion is because:
1866 : * - We ONLY do async inode ref deletion for the inode who has only
1867 : * one link(i_nlink == 1), it means there is only one inode ref.
1868 : * And in most case, the inode ref and the inode item are in the
1869 : * same leaf, and we will deal with them at the same time.
1870 : * Since we are sure we will reserve the space for the inode item,
1871 : * it is unnecessary to reserve space for inode ref deletion.
1872 : * - If the inode ref and the inode item are not in the same leaf,
1873 : * We also needn't worry about enospc problem, because we reserve
1874 : * much more space for the inode update than it needs.
1875 : * - At the worst, we can steal some space from the global reservation.
1876 : * It is very rare.
1877 : */
1878 6256 : mutex_lock(&delayed_node->mutex);
1879 6256 : if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1880 : goto release_node;
1881 :
1882 : set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1883 6256 : delayed_node->count++;
1884 6256 : atomic_inc(&BTRFS_I(inode)->root->fs_info->delayed_root->items);
1885 : release_node:
1886 6256 : mutex_unlock(&delayed_node->mutex);
1887 : btrfs_release_delayed_node(delayed_node);
1888 6256 : return 0;
1889 : }
1890 :
1891 6793 : static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1892 : {
1893 6793 : struct btrfs_root *root = delayed_node->root;
1894 6105 : struct btrfs_delayed_item *curr_item, *prev_item;
1895 :
1896 6793 : mutex_lock(&delayed_node->mutex);
1897 : curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1898 13586 : while (curr_item) {
1899 0 : btrfs_delayed_item_release_metadata(root, curr_item);
1900 : prev_item = curr_item;
1901 : curr_item = __btrfs_next_delayed_item(prev_item);
1902 0 : btrfs_release_delayed_item(prev_item);
1903 : }
1904 :
1905 : curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1906 19691 : while (curr_item) {
1907 6105 : btrfs_delayed_item_release_metadata(root, curr_item);
1908 : prev_item = curr_item;
1909 : curr_item = __btrfs_next_delayed_item(prev_item);
1910 6105 : btrfs_release_delayed_item(prev_item);
1911 : }
1912 :
1913 6793 : if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1914 0 : btrfs_release_delayed_iref(delayed_node);
1915 :
1916 6793 : if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1917 0 : btrfs_delayed_inode_release_metadata(root, delayed_node);
1918 0 : btrfs_release_delayed_inode(delayed_node);
1919 : }
1920 6793 : mutex_unlock(&delayed_node->mutex);
1921 6793 : }
1922 :
1923 6907 : void btrfs_kill_delayed_inode_items(struct inode *inode)
1924 : {
1925 : struct btrfs_delayed_node *delayed_node;
1926 :
1927 6907 : delayed_node = btrfs_get_delayed_node(inode);
1928 6907 : if (!delayed_node)
1929 6907 : return;
1930 :
1931 6793 : __btrfs_kill_delayed_node(delayed_node);
1932 : btrfs_release_delayed_node(delayed_node);
1933 : }
1934 :
1935 11 : void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1936 : {
1937 : u64 inode_id = 0;
1938 : struct btrfs_delayed_node *delayed_nodes[8];
1939 : int i, n;
1940 :
1941 : while (1) {
1942 : spin_lock(&root->inode_lock);
1943 11 : n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1944 : (void **)delayed_nodes, inode_id,
1945 : ARRAY_SIZE(delayed_nodes));
1946 11 : if (!n) {
1947 : spin_unlock(&root->inode_lock);
1948 : break;
1949 : }
1950 :
1951 0 : inode_id = delayed_nodes[n - 1]->inode_id + 1;
1952 :
1953 0 : for (i = 0; i < n; i++)
1954 0 : atomic_inc(&delayed_nodes[i]->refs);
1955 : spin_unlock(&root->inode_lock);
1956 :
1957 0 : for (i = 0; i < n; i++) {
1958 0 : __btrfs_kill_delayed_node(delayed_nodes[i]);
1959 0 : btrfs_release_delayed_node(delayed_nodes[i]);
1960 : }
1961 : }
1962 11 : }
1963 :
1964 0 : void btrfs_destroy_delayed_inodes(struct btrfs_root *root)
1965 : {
1966 : struct btrfs_delayed_root *delayed_root;
1967 : struct btrfs_delayed_node *curr_node, *prev_node;
1968 :
1969 : delayed_root = btrfs_get_delayed_root(root);
1970 :
1971 0 : curr_node = btrfs_first_delayed_node(delayed_root);
1972 0 : while (curr_node) {
1973 0 : __btrfs_kill_delayed_node(curr_node);
1974 :
1975 : prev_node = curr_node;
1976 0 : curr_node = btrfs_next_delayed_node(curr_node);
1977 : btrfs_release_delayed_node(prev_node);
1978 : }
1979 0 : }
1980 :
|