Line data Source code
1 : /*
2 : * Copyright (C) 2007 Oracle. All rights reserved.
3 : *
4 : * This program is free software; you can redistribute it and/or
5 : * modify it under the terms of the GNU General Public
6 : * License v2 as published by the Free Software Foundation.
7 : *
8 : * This program is distributed in the hope that it will be useful,
9 : * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 : * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 : * General Public License for more details.
12 : *
13 : * You should have received a copy of the GNU General Public
14 : * License along with this program; if not, write to the
15 : * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 : * Boston, MA 021110-1307, USA.
17 : */
18 : #include <linux/sched.h>
19 : #include <linux/pagemap.h>
20 : #include <linux/writeback.h>
21 : #include <linux/blkdev.h>
22 : #include <linux/sort.h>
23 : #include <linux/rcupdate.h>
24 : #include <linux/kthread.h>
25 : #include <linux/slab.h>
26 : #include <linux/ratelimit.h>
27 : #include <linux/percpu_counter.h>
28 : #include "hash.h"
29 : #include "tree-log.h"
30 : #include "disk-io.h"
31 : #include "print-tree.h"
32 : #include "volumes.h"
33 : #include "raid56.h"
34 : #include "locking.h"
35 : #include "free-space-cache.h"
36 : #include "math.h"
37 : #include "sysfs.h"
38 : #include "qgroup.h"
39 :
40 : #undef SCRAMBLE_DELAYED_REFS
41 :
42 : /*
43 : * control flags for do_chunk_alloc's force field
44 : * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 : * if we really need one.
46 : *
47 : * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 : * if we have very few chunks already allocated. This is
49 : * used as part of the clustering code to help make sure
50 : * we have a good pool of storage to cluster in, without
51 : * filling the FS with empty chunks
52 : *
53 : * CHUNK_ALLOC_FORCE means it must try to allocate one
54 : *
55 : */
56 : enum {
57 : CHUNK_ALLOC_NO_FORCE = 0,
58 : CHUNK_ALLOC_LIMITED = 1,
59 : CHUNK_ALLOC_FORCE = 2,
60 : };
61 :
62 : /*
63 : * Control how reservations are dealt with.
64 : *
65 : * RESERVE_FREE - freeing a reservation.
66 : * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 : * ENOSPC accounting
68 : * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 : * bytes_may_use as the ENOSPC accounting is done elsewhere
70 : */
71 : enum {
72 : RESERVE_FREE = 0,
73 : RESERVE_ALLOC = 1,
74 : RESERVE_ALLOC_NO_ACCOUNT = 2,
75 : };
76 :
77 : static int update_block_group(struct btrfs_root *root,
78 : u64 bytenr, u64 num_bytes, int alloc);
79 : static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
80 : struct btrfs_root *root,
81 : u64 bytenr, u64 num_bytes, u64 parent,
82 : u64 root_objectid, u64 owner_objectid,
83 : u64 owner_offset, int refs_to_drop,
84 : struct btrfs_delayed_extent_op *extra_op,
85 : int no_quota);
86 : static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
87 : struct extent_buffer *leaf,
88 : struct btrfs_extent_item *ei);
89 : static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
90 : struct btrfs_root *root,
91 : u64 parent, u64 root_objectid,
92 : u64 flags, u64 owner, u64 offset,
93 : struct btrfs_key *ins, int ref_mod);
94 : static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
95 : struct btrfs_root *root,
96 : u64 parent, u64 root_objectid,
97 : u64 flags, struct btrfs_disk_key *key,
98 : int level, struct btrfs_key *ins,
99 : int no_quota);
100 : static int do_chunk_alloc(struct btrfs_trans_handle *trans,
101 : struct btrfs_root *extent_root, u64 flags,
102 : int force);
103 : static int find_next_key(struct btrfs_path *path, int level,
104 : struct btrfs_key *key);
105 : static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
106 : int dump_block_groups);
107 : static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
108 : u64 num_bytes, int reserve,
109 : int delalloc);
110 : static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
111 : u64 num_bytes);
112 : int btrfs_pin_extent(struct btrfs_root *root,
113 : u64 bytenr, u64 num_bytes, int reserved);
114 :
115 : static noinline int
116 155859 : block_group_cache_done(struct btrfs_block_group_cache *cache)
117 : {
118 155859 : smp_mb();
119 155864 : return cache->cached == BTRFS_CACHE_FINISHED ||
120 : cache->cached == BTRFS_CACHE_ERROR;
121 : }
122 :
123 : static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
124 : {
125 209825 : return (cache->flags & bits) == bits;
126 : }
127 :
128 : static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
129 : {
130 793807 : atomic_inc(&cache->count);
131 : }
132 :
133 795183 : void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
134 : {
135 1590449 : if (atomic_dec_and_test(&cache->count)) {
136 1228 : WARN_ON(cache->pinned > 0);
137 1228 : WARN_ON(cache->reserved > 0);
138 1228 : kfree(cache->free_space_ctl);
139 1228 : kfree(cache);
140 : }
141 795266 : }
142 :
143 : /*
144 : * this adds the block group to the fs_info rb tree for the block group
145 : * cache
146 : */
147 1228 : static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
148 : struct btrfs_block_group_cache *block_group)
149 : {
150 : struct rb_node **p;
151 : struct rb_node *parent = NULL;
152 : struct btrfs_block_group_cache *cache;
153 :
154 : spin_lock(&info->block_group_cache_lock);
155 1228 : p = &info->block_group_cache_tree.rb_node;
156 :
157 4562 : while (*p) {
158 : parent = *p;
159 : cache = rb_entry(parent, struct btrfs_block_group_cache,
160 : cache_node);
161 2106 : if (block_group->key.objectid < cache->key.objectid) {
162 0 : p = &(*p)->rb_left;
163 2106 : } else if (block_group->key.objectid > cache->key.objectid) {
164 2106 : p = &(*p)->rb_right;
165 : } else {
166 : spin_unlock(&info->block_group_cache_lock);
167 0 : return -EEXIST;
168 : }
169 : }
170 :
171 1228 : rb_link_node(&block_group->cache_node, parent, p);
172 1228 : rb_insert_color(&block_group->cache_node,
173 : &info->block_group_cache_tree);
174 :
175 1228 : if (info->first_logical_byte > block_group->key.objectid)
176 221 : info->first_logical_byte = block_group->key.objectid;
177 :
178 : spin_unlock(&info->block_group_cache_lock);
179 :
180 1228 : return 0;
181 : }
182 :
183 : /*
184 : * This will return the block group at or after bytenr if contains is 0, else
185 : * it will return the block group that contains the bytenr
186 : */
187 : static struct btrfs_block_group_cache *
188 479918 : block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
189 : int contains)
190 : {
191 : struct btrfs_block_group_cache *cache, *ret = NULL;
192 : struct rb_node *n;
193 : u64 end, start;
194 :
195 : spin_lock(&info->block_group_cache_lock);
196 479965 : n = info->block_group_cache_tree.rb_node;
197 :
198 1936016 : while (n) {
199 1444262 : cache = rb_entry(n, struct btrfs_block_group_cache,
200 : cache_node);
201 1444262 : end = cache->key.objectid + cache->key.offset - 1;
202 : start = cache->key.objectid;
203 :
204 1444262 : if (bytenr < start) {
205 327861 : if (!contains && (!ret || start < ret->key.objectid))
206 : ret = cache;
207 327861 : n = n->rb_left;
208 1116401 : } else if (bytenr > start) {
209 1000827 : if (contains && bytenr <= end) {
210 : ret = cache;
211 : break;
212 : }
213 648225 : n = n->rb_right;
214 : } else {
215 : ret = cache;
216 : break;
217 : }
218 : }
219 479965 : if (ret) {
220 : btrfs_get_block_group(ret);
221 474945 : if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
222 22 : info->first_logical_byte = ret->key.objectid;
223 : }
224 : spin_unlock(&info->block_group_cache_lock);
225 :
226 479964 : return ret;
227 : }
228 :
229 689 : static int add_excluded_extent(struct btrfs_root *root,
230 : u64 start, u64 num_bytes)
231 : {
232 689 : u64 end = start + num_bytes - 1;
233 689 : set_extent_bits(&root->fs_info->freed_extents[0],
234 : start, end, EXTENT_UPTODATE, GFP_NOFS);
235 689 : set_extent_bits(&root->fs_info->freed_extents[1],
236 : start, end, EXTENT_UPTODATE, GFP_NOFS);
237 689 : return 0;
238 : }
239 :
240 1300 : static void free_excluded_extents(struct btrfs_root *root,
241 : struct btrfs_block_group_cache *cache)
242 : {
243 : u64 start, end;
244 :
245 1300 : start = cache->key.objectid;
246 1300 : end = start + cache->key.offset - 1;
247 :
248 1300 : clear_extent_bits(&root->fs_info->freed_extents[0],
249 : start, end, EXTENT_UPTODATE, GFP_NOFS);
250 1300 : clear_extent_bits(&root->fs_info->freed_extents[1],
251 : start, end, EXTENT_UPTODATE, GFP_NOFS);
252 1300 : }
253 :
254 1228 : static int exclude_super_stripes(struct btrfs_root *root,
255 : struct btrfs_block_group_cache *cache)
256 : {
257 : u64 bytenr;
258 : u64 *logical;
259 : int stripe_len;
260 : int i, nr, ret;
261 :
262 1228 : if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
263 217 : stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
264 217 : cache->bytes_super += stripe_len;
265 217 : ret = add_excluded_extent(root, cache->key.objectid,
266 : stripe_len);
267 217 : if (ret)
268 : return ret;
269 : }
270 :
271 3684 : for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
272 : bytenr = btrfs_sb_offset(i);
273 3684 : ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
274 : cache->key.objectid, bytenr,
275 : 0, &logical, &nr, &stripe_len);
276 3684 : if (ret)
277 : return ret;
278 :
279 4156 : while (nr--) {
280 : u64 start, len;
281 :
282 944 : if (logical[nr] > cache->key.objectid +
283 472 : cache->key.offset)
284 0 : continue;
285 :
286 472 : if (logical[nr] + stripe_len <= cache->key.objectid)
287 0 : continue;
288 :
289 : start = logical[nr];
290 472 : if (start < cache->key.objectid) {
291 : start = cache->key.objectid;
292 0 : len = (logical[nr] + stripe_len) - start;
293 : } else {
294 472 : len = min_t(u64, stripe_len,
295 : cache->key.objectid +
296 : cache->key.offset - start);
297 : }
298 :
299 472 : cache->bytes_super += len;
300 472 : ret = add_excluded_extent(root, start, len);
301 472 : if (ret) {
302 0 : kfree(logical);
303 0 : return ret;
304 : }
305 : }
306 :
307 3684 : kfree(logical);
308 : }
309 : return 0;
310 : }
311 :
312 : static struct btrfs_caching_control *
313 128 : get_caching_control(struct btrfs_block_group_cache *cache)
314 : {
315 : struct btrfs_caching_control *ctl;
316 :
317 : spin_lock(&cache->lock);
318 128 : if (cache->cached != BTRFS_CACHE_STARTED) {
319 : spin_unlock(&cache->lock);
320 0 : return NULL;
321 : }
322 :
323 : /* We're loading it the fast way, so we don't have a caching_ctl. */
324 128 : if (!cache->caching_ctl) {
325 : spin_unlock(&cache->lock);
326 0 : return NULL;
327 : }
328 :
329 : ctl = cache->caching_ctl;
330 128 : atomic_inc(&ctl->count);
331 : spin_unlock(&cache->lock);
332 128 : return ctl;
333 : }
334 :
335 677 : static void put_caching_control(struct btrfs_caching_control *ctl)
336 : {
337 1354 : if (atomic_dec_and_test(&ctl->count))
338 343 : kfree(ctl);
339 677 : }
340 :
341 : /*
342 : * this is only called by cache_block_group, since we could have freed extents
343 : * we need to check the pinned_extents for any extents that can't be used yet
344 : * since their free space will be released as soon as the transaction commits.
345 : */
346 8152 : static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
347 : struct btrfs_fs_info *info, u64 start, u64 end)
348 : {
349 : u64 extent_start, extent_end, size, total_added = 0;
350 : int ret;
351 :
352 7263 : while (start < end) {
353 1439 : ret = find_first_extent_bit(info->pinned_extents, start,
354 : &extent_start, &extent_end,
355 : EXTENT_DIRTY | EXTENT_UPTODATE,
356 : NULL);
357 1439 : if (ret)
358 : break;
359 :
360 662 : if (extent_start <= start) {
361 214 : start = extent_end + 1;
362 448 : } else if (extent_start > start && extent_start < end) {
363 122 : size = extent_start - start;
364 122 : total_added += size;
365 : ret = btrfs_add_free_space(block_group, start,
366 : size);
367 122 : BUG_ON(ret); /* -ENOMEM or logic error */
368 122 : start = extent_end + 1;
369 : } else {
370 : break;
371 : }
372 : }
373 :
374 6927 : if (start < end) {
375 1103 : size = end - start;
376 1103 : total_added += size;
377 : ret = btrfs_add_free_space(block_group, start, size);
378 1103 : BUG_ON(ret); /* -ENOMEM or logic error */
379 : }
380 :
381 6927 : return total_added;
382 : }
383 :
384 206 : static noinline void caching_thread(struct btrfs_work *work)
385 : {
386 : struct btrfs_block_group_cache *block_group;
387 : struct btrfs_fs_info *fs_info;
388 : struct btrfs_caching_control *caching_ctl;
389 : struct btrfs_root *extent_root;
390 : struct btrfs_path *path;
391 406 : struct extent_buffer *leaf;
392 : struct btrfs_key key;
393 : u64 total_found = 0;
394 : u64 last = 0;
395 : u32 nritems;
396 : int ret = -ENOMEM;
397 :
398 206 : caching_ctl = container_of(work, struct btrfs_caching_control, work);
399 206 : block_group = caching_ctl->block_group;
400 206 : fs_info = block_group->fs_info;
401 206 : extent_root = fs_info->extent_root;
402 :
403 206 : path = btrfs_alloc_path();
404 206 : if (!path)
405 : goto out;
406 :
407 206 : last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
408 :
409 : /*
410 : * We don't want to deadlock with somebody trying to allocate a new
411 : * extent for the extent root while also trying to search the extent
412 : * root to add free space. So we skip locking and search the commit
413 : * root, since its read-only
414 : */
415 206 : path->skip_locking = 1;
416 206 : path->search_commit_root = 1;
417 206 : path->reada = 1;
418 :
419 206 : key.objectid = last;
420 206 : key.offset = 0;
421 206 : key.type = BTRFS_EXTENT_ITEM_KEY;
422 : again:
423 206 : mutex_lock(&caching_ctl->mutex);
424 : /* need to make sure the commit_root doesn't disappear */
425 206 : down_read(&fs_info->commit_root_sem);
426 :
427 : next:
428 370 : ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
429 370 : if (ret < 0)
430 : goto err;
431 :
432 370 : leaf = path->nodes[0];
433 : nritems = btrfs_header_nritems(leaf);
434 :
435 : while (1) {
436 6546 : if (btrfs_fs_closing(fs_info) > 1) {
437 : last = (u64)-1;
438 : break;
439 : }
440 :
441 6546 : if (path->slots[0] < nritems) {
442 6421 : btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
443 : } else {
444 125 : ret = find_next_key(path, 0, &key);
445 125 : if (ret)
446 : break;
447 :
448 72 : if (need_resched() ||
449 : rwsem_is_contended(&fs_info->commit_root_sem)) {
450 0 : caching_ctl->progress = last;
451 0 : btrfs_release_path(path);
452 0 : up_read(&fs_info->commit_root_sem);
453 0 : mutex_unlock(&caching_ctl->mutex);
454 0 : cond_resched();
455 0 : goto again;
456 : }
457 :
458 36 : ret = btrfs_next_leaf(extent_root, path);
459 36 : if (ret < 0)
460 : goto err;
461 36 : if (ret)
462 : break;
463 36 : leaf = path->nodes[0];
464 : nritems = btrfs_header_nritems(leaf);
465 36 : continue;
466 : }
467 :
468 6421 : if (key.objectid < last) {
469 164 : key.objectid = last;
470 164 : key.offset = 0;
471 164 : key.type = BTRFS_EXTENT_ITEM_KEY;
472 :
473 164 : caching_ctl->progress = last;
474 164 : btrfs_release_path(path);
475 164 : goto next;
476 : }
477 :
478 6257 : if (key.objectid < block_group->key.objectid) {
479 0 : path->slots[0]++;
480 0 : continue;
481 : }
482 :
483 6257 : if (key.objectid >= block_group->key.objectid +
484 6257 : block_group->key.offset)
485 : break;
486 :
487 6140 : if (key.type == BTRFS_EXTENT_ITEM_KEY ||
488 : key.type == BTRFS_METADATA_ITEM_KEY) {
489 6101 : total_found += add_new_free_space(block_group,
490 : fs_info, last,
491 : key.objectid);
492 6101 : if (key.type == BTRFS_METADATA_ITEM_KEY)
493 0 : last = key.objectid +
494 0 : fs_info->tree_root->leafsize;
495 : else
496 6101 : last = key.objectid + key.offset;
497 :
498 6101 : if (total_found > (1024 * 1024 * 2)) {
499 : total_found = 0;
500 15 : wake_up(&caching_ctl->wait);
501 : }
502 : }
503 6140 : path->slots[0]++;
504 : }
505 : ret = 0;
506 :
507 206 : total_found += add_new_free_space(block_group, fs_info, last,
508 206 : block_group->key.objectid +
509 206 : block_group->key.offset);
510 206 : caching_ctl->progress = (u64)-1;
511 :
512 : spin_lock(&block_group->lock);
513 206 : block_group->caching_ctl = NULL;
514 206 : block_group->cached = BTRFS_CACHE_FINISHED;
515 : spin_unlock(&block_group->lock);
516 :
517 : err:
518 206 : btrfs_free_path(path);
519 206 : up_read(&fs_info->commit_root_sem);
520 :
521 206 : free_excluded_extents(extent_root, block_group);
522 :
523 206 : mutex_unlock(&caching_ctl->mutex);
524 : out:
525 206 : if (ret) {
526 : spin_lock(&block_group->lock);
527 0 : block_group->caching_ctl = NULL;
528 0 : block_group->cached = BTRFS_CACHE_ERROR;
529 : spin_unlock(&block_group->lock);
530 : }
531 206 : wake_up(&caching_ctl->wait);
532 :
533 206 : put_caching_control(caching_ctl);
534 206 : btrfs_put_block_group(block_group);
535 206 : }
536 :
537 517 : static int cache_block_group(struct btrfs_block_group_cache *cache,
538 : int load_cache_only)
539 : {
540 1034 : DEFINE_WAIT(wait);
541 517 : struct btrfs_fs_info *fs_info = cache->fs_info;
542 : struct btrfs_caching_control *caching_ctl;
543 : int ret = 0;
544 :
545 517 : caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
546 517 : if (!caching_ctl)
547 : return -ENOMEM;
548 :
549 517 : INIT_LIST_HEAD(&caching_ctl->list);
550 517 : mutex_init(&caching_ctl->mutex);
551 517 : init_waitqueue_head(&caching_ctl->wait);
552 517 : caching_ctl->block_group = cache;
553 517 : caching_ctl->progress = cache->key.objectid;
554 : atomic_set(&caching_ctl->count, 1);
555 517 : btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
556 : caching_thread, NULL, NULL);
557 :
558 : spin_lock(&cache->lock);
559 : /*
560 : * This should be a rare occasion, but this could happen I think in the
561 : * case where one thread starts to load the space cache info, and then
562 : * some other thread starts a transaction commit which tries to do an
563 : * allocation while the other thread is still loading the space cache
564 : * info. The previous loop should have kept us from choosing this block
565 : * group, but if we've moved to the state where we will wait on caching
566 : * block groups we need to first check if we're doing a fast load here,
567 : * so we can wait for it to finish, otherwise we could end up allocating
568 : * from a block group who's cache gets evicted for one reason or
569 : * another.
570 : */
571 517 : while (cache->cached == BTRFS_CACHE_FAST) {
572 : struct btrfs_caching_control *ctl;
573 :
574 0 : ctl = cache->caching_ctl;
575 0 : atomic_inc(&ctl->count);
576 0 : prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
577 : spin_unlock(&cache->lock);
578 :
579 0 : schedule();
580 :
581 0 : finish_wait(&ctl->wait, &wait);
582 0 : put_caching_control(ctl);
583 : spin_lock(&cache->lock);
584 : }
585 :
586 517 : if (cache->cached != BTRFS_CACHE_NO) {
587 : spin_unlock(&cache->lock);
588 174 : kfree(caching_ctl);
589 174 : return 0;
590 : }
591 343 : WARN_ON(cache->caching_ctl);
592 343 : cache->caching_ctl = caching_ctl;
593 343 : cache->cached = BTRFS_CACHE_FAST;
594 : spin_unlock(&cache->lock);
595 :
596 343 : if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
597 343 : ret = load_free_space_cache(fs_info, cache);
598 :
599 : spin_lock(&cache->lock);
600 343 : if (ret == 1) {
601 135 : cache->caching_ctl = NULL;
602 135 : cache->cached = BTRFS_CACHE_FINISHED;
603 135 : cache->last_byte_to_unpin = (u64)-1;
604 : } else {
605 208 : if (load_cache_only) {
606 2 : cache->caching_ctl = NULL;
607 2 : cache->cached = BTRFS_CACHE_NO;
608 : } else {
609 206 : cache->cached = BTRFS_CACHE_STARTED;
610 : }
611 : }
612 : spin_unlock(&cache->lock);
613 343 : wake_up(&caching_ctl->wait);
614 343 : if (ret == 1) {
615 135 : put_caching_control(caching_ctl);
616 135 : free_excluded_extents(fs_info->extent_root, cache);
617 135 : return 0;
618 : }
619 : } else {
620 : /*
621 : * We are not going to do the fast caching, set cached to the
622 : * appropriate value and wakeup any waiters.
623 : */
624 : spin_lock(&cache->lock);
625 0 : if (load_cache_only) {
626 0 : cache->caching_ctl = NULL;
627 0 : cache->cached = BTRFS_CACHE_NO;
628 : } else {
629 0 : cache->cached = BTRFS_CACHE_STARTED;
630 : }
631 : spin_unlock(&cache->lock);
632 0 : wake_up(&caching_ctl->wait);
633 : }
634 :
635 208 : if (load_cache_only) {
636 2 : put_caching_control(caching_ctl);
637 2 : return 0;
638 : }
639 :
640 206 : down_write(&fs_info->commit_root_sem);
641 206 : atomic_inc(&caching_ctl->count);
642 206 : list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
643 206 : up_write(&fs_info->commit_root_sem);
644 :
645 : btrfs_get_block_group(cache);
646 :
647 206 : btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
648 :
649 206 : return ret;
650 : }
651 :
652 : /*
653 : * return the block group that starts at or after bytenr
654 : */
655 : static struct btrfs_block_group_cache *
656 : btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
657 : {
658 : struct btrfs_block_group_cache *cache;
659 :
660 57628 : cache = block_group_cache_tree_search(info, bytenr, 0);
661 :
662 : return cache;
663 : }
664 :
665 : /*
666 : * return the block group that contains the given bytenr
667 : */
668 46216 : struct btrfs_block_group_cache *btrfs_lookup_block_group(
669 : struct btrfs_fs_info *info,
670 : u64 bytenr)
671 : {
672 : struct btrfs_block_group_cache *cache;
673 :
674 422334 : cache = block_group_cache_tree_search(info, bytenr, 1);
675 :
676 46217 : return cache;
677 : }
678 :
679 : static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
680 : u64 flags)
681 : {
682 215939 : struct list_head *head = &info->space_info;
683 : struct btrfs_space_info *found;
684 :
685 200290 : flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
686 :
687 : rcu_read_lock();
688 311267 : list_for_each_entry_rcu(found, head, list) {
689 310610 : if (found->flags & flags) {
690 : rcu_read_unlock();
691 : return found;
692 : }
693 : }
694 : rcu_read_unlock();
695 : return NULL;
696 : }
697 :
698 : /*
699 : * after adding space to the filesystem, we need to clear the full flags
700 : * on all the space infos.
701 : */
702 0 : void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
703 : {
704 72 : struct list_head *head = &info->space_info;
705 : struct btrfs_space_info *found;
706 :
707 : rcu_read_lock();
708 288 : list_for_each_entry_rcu(found, head, list)
709 216 : found->full = 0;
710 : rcu_read_unlock();
711 0 : }
712 :
713 : /* simple helper to search for an existing extent at a given offset */
714 0 : int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
715 : {
716 : int ret;
717 : struct btrfs_key key;
718 : struct btrfs_path *path;
719 :
720 0 : path = btrfs_alloc_path();
721 0 : if (!path)
722 : return -ENOMEM;
723 :
724 0 : key.objectid = start;
725 0 : key.offset = len;
726 0 : key.type = BTRFS_EXTENT_ITEM_KEY;
727 0 : ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
728 : 0, 0);
729 0 : if (ret > 0) {
730 0 : btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
731 0 : if (key.objectid == start &&
732 0 : key.type == BTRFS_METADATA_ITEM_KEY)
733 : ret = 0;
734 : }
735 0 : btrfs_free_path(path);
736 0 : return ret;
737 : }
738 :
739 : /*
740 : * helper function to lookup reference count and flags of a tree block.
741 : *
742 : * the head node for delayed ref is used to store the sum of all the
743 : * reference count modifications queued up in the rbtree. the head
744 : * node may also store the extent flags to set. This way you can check
745 : * to see what the reference count and extent flags would be if all of
746 : * the delayed refs are not processed.
747 : */
748 1418 : int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
749 : struct btrfs_root *root, u64 bytenr,
750 : u64 offset, int metadata, u64 *refs, u64 *flags)
751 : {
752 : struct btrfs_delayed_ref_head *head;
753 : struct btrfs_delayed_ref_root *delayed_refs;
754 : struct btrfs_path *path;
755 : struct btrfs_extent_item *ei;
756 : struct extent_buffer *leaf;
757 : struct btrfs_key key;
758 : u32 item_size;
759 : u64 num_refs;
760 : u64 extent_flags;
761 : int ret;
762 :
763 : /*
764 : * If we don't have skinny metadata, don't bother doing anything
765 : * different
766 : */
767 2836 : if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
768 1418 : offset = root->leafsize;
769 : metadata = 0;
770 : }
771 :
772 1418 : path = btrfs_alloc_path();
773 1418 : if (!path)
774 : return -ENOMEM;
775 :
776 1418 : if (!trans) {
777 1 : path->skip_locking = 1;
778 1 : path->search_commit_root = 1;
779 : }
780 :
781 : search_again:
782 1418 : key.objectid = bytenr;
783 1418 : key.offset = offset;
784 1418 : if (metadata)
785 0 : key.type = BTRFS_METADATA_ITEM_KEY;
786 : else
787 1418 : key.type = BTRFS_EXTENT_ITEM_KEY;
788 :
789 : again:
790 1418 : ret = btrfs_search_slot(trans, root->fs_info->extent_root,
791 : &key, path, 0, 0);
792 1418 : if (ret < 0)
793 : goto out_free;
794 :
795 1418 : if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
796 0 : if (path->slots[0]) {
797 0 : path->slots[0]--;
798 0 : btrfs_item_key_to_cpu(path->nodes[0], &key,
799 : path->slots[0]);
800 0 : if (key.objectid == bytenr &&
801 0 : key.type == BTRFS_EXTENT_ITEM_KEY &&
802 0 : key.offset == root->leafsize)
803 : ret = 0;
804 : }
805 0 : if (ret) {
806 0 : key.objectid = bytenr;
807 0 : key.type = BTRFS_EXTENT_ITEM_KEY;
808 0 : key.offset = root->leafsize;
809 0 : btrfs_release_path(path);
810 0 : goto again;
811 : }
812 : }
813 :
814 1418 : if (ret == 0) {
815 1290 : leaf = path->nodes[0];
816 1290 : item_size = btrfs_item_size_nr(leaf, path->slots[0]);
817 1290 : if (item_size >= sizeof(*ei)) {
818 2580 : ei = btrfs_item_ptr(leaf, path->slots[0],
819 : struct btrfs_extent_item);
820 : num_refs = btrfs_extent_refs(leaf, ei);
821 : extent_flags = btrfs_extent_flags(leaf, ei);
822 : } else {
823 : #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
824 : struct btrfs_extent_item_v0 *ei0;
825 0 : BUG_ON(item_size != sizeof(*ei0));
826 0 : ei0 = btrfs_item_ptr(leaf, path->slots[0],
827 : struct btrfs_extent_item_v0);
828 0 : num_refs = btrfs_extent_refs_v0(leaf, ei0);
829 : /* FIXME: this isn't correct for data */
830 : extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
831 : #else
832 : BUG();
833 : #endif
834 : }
835 1290 : BUG_ON(num_refs == 0);
836 : } else {
837 : num_refs = 0;
838 : extent_flags = 0;
839 : ret = 0;
840 : }
841 :
842 1418 : if (!trans)
843 : goto out;
844 :
845 1417 : delayed_refs = &trans->transaction->delayed_refs;
846 : spin_lock(&delayed_refs->lock);
847 1417 : head = btrfs_find_delayed_ref_head(trans, bytenr);
848 1417 : if (head) {
849 337 : if (!mutex_trylock(&head->mutex)) {
850 0 : atomic_inc(&head->node.refs);
851 : spin_unlock(&delayed_refs->lock);
852 :
853 0 : btrfs_release_path(path);
854 :
855 : /*
856 : * Mutex was contended, block until it's released and try
857 : * again
858 : */
859 0 : mutex_lock(&head->mutex);
860 0 : mutex_unlock(&head->mutex);
861 0 : btrfs_put_delayed_ref(&head->node);
862 0 : goto search_again;
863 : }
864 : spin_lock(&head->lock);
865 337 : if (head->extent_op && head->extent_op->update_flags)
866 135 : extent_flags |= head->extent_op->flags_to_set;
867 : else
868 202 : BUG_ON(num_refs == 0);
869 :
870 337 : num_refs += head->node.ref_mod;
871 : spin_unlock(&head->lock);
872 337 : mutex_unlock(&head->mutex);
873 : }
874 : spin_unlock(&delayed_refs->lock);
875 : out:
876 1418 : WARN_ON(num_refs == 0);
877 1418 : if (refs)
878 1417 : *refs = num_refs;
879 1418 : if (flags)
880 1418 : *flags = extent_flags;
881 : out_free:
882 1418 : btrfs_free_path(path);
883 1418 : return ret;
884 : }
885 :
886 : /*
887 : * Back reference rules. Back refs have three main goals:
888 : *
889 : * 1) differentiate between all holders of references to an extent so that
890 : * when a reference is dropped we can make sure it was a valid reference
891 : * before freeing the extent.
892 : *
893 : * 2) Provide enough information to quickly find the holders of an extent
894 : * if we notice a given block is corrupted or bad.
895 : *
896 : * 3) Make it easy to migrate blocks for FS shrinking or storage pool
897 : * maintenance. This is actually the same as #2, but with a slightly
898 : * different use case.
899 : *
900 : * There are two kinds of back refs. The implicit back refs is optimized
901 : * for pointers in non-shared tree blocks. For a given pointer in a block,
902 : * back refs of this kind provide information about the block's owner tree
903 : * and the pointer's key. These information allow us to find the block by
904 : * b-tree searching. The full back refs is for pointers in tree blocks not
905 : * referenced by their owner trees. The location of tree block is recorded
906 : * in the back refs. Actually the full back refs is generic, and can be
907 : * used in all cases the implicit back refs is used. The major shortcoming
908 : * of the full back refs is its overhead. Every time a tree block gets
909 : * COWed, we have to update back refs entry for all pointers in it.
910 : *
911 : * For a newly allocated tree block, we use implicit back refs for
912 : * pointers in it. This means most tree related operations only involve
913 : * implicit back refs. For a tree block created in old transaction, the
914 : * only way to drop a reference to it is COW it. So we can detect the
915 : * event that tree block loses its owner tree's reference and do the
916 : * back refs conversion.
917 : *
918 : * When a tree block is COW'd through a tree, there are four cases:
919 : *
920 : * The reference count of the block is one and the tree is the block's
921 : * owner tree. Nothing to do in this case.
922 : *
923 : * The reference count of the block is one and the tree is not the
924 : * block's owner tree. In this case, full back refs is used for pointers
925 : * in the block. Remove these full back refs, add implicit back refs for
926 : * every pointers in the new block.
927 : *
928 : * The reference count of the block is greater than one and the tree is
929 : * the block's owner tree. In this case, implicit back refs is used for
930 : * pointers in the block. Add full back refs for every pointers in the
931 : * block, increase lower level extents' reference counts. The original
932 : * implicit back refs are entailed to the new block.
933 : *
934 : * The reference count of the block is greater than one and the tree is
935 : * not the block's owner tree. Add implicit back refs for every pointer in
936 : * the new block, increase lower level extents' reference count.
937 : *
938 : * Back Reference Key composing:
939 : *
940 : * The key objectid corresponds to the first byte in the extent,
941 : * The key type is used to differentiate between types of back refs.
942 : * There are different meanings of the key offset for different types
943 : * of back refs.
944 : *
945 : * File extents can be referenced by:
946 : *
947 : * - multiple snapshots, subvolumes, or different generations in one subvol
948 : * - different files inside a single subvolume
949 : * - different offsets inside a file (bookend extents in file.c)
950 : *
951 : * The extent ref structure for the implicit back refs has fields for:
952 : *
953 : * - Objectid of the subvolume root
954 : * - objectid of the file holding the reference
955 : * - original offset in the file
956 : * - how many bookend extents
957 : *
958 : * The key offset for the implicit back refs is hash of the first
959 : * three fields.
960 : *
961 : * The extent ref structure for the full back refs has field for:
962 : *
963 : * - number of pointers in the tree leaf
964 : *
965 : * The key offset for the implicit back refs is the first byte of
966 : * the tree leaf
967 : *
968 : * When a file extent is allocated, The implicit back refs is used.
969 : * the fields are filled in:
970 : *
971 : * (root_key.objectid, inode objectid, offset in file, 1)
972 : *
973 : * When a file extent is removed file truncation, we find the
974 : * corresponding implicit back refs and check the following fields:
975 : *
976 : * (btrfs_header_owner(leaf), inode objectid, offset in file)
977 : *
978 : * Btree extents can be referenced by:
979 : *
980 : * - Different subvolumes
981 : *
982 : * Both the implicit back refs and the full back refs for tree blocks
983 : * only consist of key. The key offset for the implicit back refs is
984 : * objectid of block's owner tree. The key offset for the full back refs
985 : * is the first byte of parent block.
986 : *
987 : * When implicit back refs is used, information about the lowest key and
988 : * level of the tree block are required. These information are stored in
989 : * tree block info structure.
990 : */
991 :
992 : #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
993 0 : static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
994 : struct btrfs_root *root,
995 : struct btrfs_path *path,
996 : u64 owner, u32 extra_size)
997 : {
998 : struct btrfs_extent_item *item;
999 : struct btrfs_extent_item_v0 *ei0;
1000 : struct btrfs_extent_ref_v0 *ref0;
1001 : struct btrfs_tree_block_info *bi;
1002 0 : struct extent_buffer *leaf;
1003 : struct btrfs_key key;
1004 : struct btrfs_key found_key;
1005 : u32 new_size = sizeof(*item);
1006 : u64 refs;
1007 : int ret;
1008 :
1009 0 : leaf = path->nodes[0];
1010 0 : BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1011 :
1012 0 : btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1013 0 : ei0 = btrfs_item_ptr(leaf, path->slots[0],
1014 : struct btrfs_extent_item_v0);
1015 0 : refs = btrfs_extent_refs_v0(leaf, ei0);
1016 :
1017 0 : if (owner == (u64)-1) {
1018 : while (1) {
1019 0 : if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1020 0 : ret = btrfs_next_leaf(root, path);
1021 0 : if (ret < 0)
1022 : return ret;
1023 0 : BUG_ON(ret > 0); /* Corruption */
1024 0 : leaf = path->nodes[0];
1025 : }
1026 0 : btrfs_item_key_to_cpu(leaf, &found_key,
1027 : path->slots[0]);
1028 0 : BUG_ON(key.objectid != found_key.objectid);
1029 0 : if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1030 0 : path->slots[0]++;
1031 0 : continue;
1032 : }
1033 0 : ref0 = btrfs_item_ptr(leaf, path->slots[0],
1034 : struct btrfs_extent_ref_v0);
1035 : owner = btrfs_ref_objectid_v0(leaf, ref0);
1036 0 : break;
1037 0 : }
1038 : }
1039 0 : btrfs_release_path(path);
1040 :
1041 0 : if (owner < BTRFS_FIRST_FREE_OBJECTID)
1042 : new_size += sizeof(*bi);
1043 :
1044 0 : new_size -= sizeof(*ei0);
1045 0 : ret = btrfs_search_slot(trans, root, &key, path,
1046 0 : new_size + extra_size, 1);
1047 0 : if (ret < 0)
1048 : return ret;
1049 0 : BUG_ON(ret); /* Corruption */
1050 :
1051 0 : btrfs_extend_item(root, path, new_size);
1052 :
1053 0 : leaf = path->nodes[0];
1054 0 : item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1055 : btrfs_set_extent_refs(leaf, item, refs);
1056 : /* FIXME: get real generation */
1057 : btrfs_set_extent_generation(leaf, item, 0);
1058 0 : if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1059 : btrfs_set_extent_flags(leaf, item,
1060 : BTRFS_EXTENT_FLAG_TREE_BLOCK |
1061 : BTRFS_BLOCK_FLAG_FULL_BACKREF);
1062 0 : bi = (struct btrfs_tree_block_info *)(item + 1);
1063 : /* FIXME: get first key of the block */
1064 0 : memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1065 0 : btrfs_set_tree_block_level(leaf, bi, (int)owner);
1066 : } else {
1067 : btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1068 : }
1069 0 : btrfs_mark_buffer_dirty(leaf);
1070 0 : return 0;
1071 : }
1072 : #endif
1073 :
1074 1598 : static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1075 : {
1076 : u32 high_crc = ~(u32)0;
1077 : u32 low_crc = ~(u32)0;
1078 : __le64 lenum;
1079 :
1080 1598 : lenum = cpu_to_le64(root_objectid);
1081 1598 : high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1082 1598 : lenum = cpu_to_le64(owner);
1083 1598 : low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1084 1598 : lenum = cpu_to_le64(offset);
1085 1598 : low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1086 :
1087 1598 : return ((u64)high_crc << 31) ^ (u64)low_crc;
1088 : }
1089 :
1090 799 : static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1091 : struct btrfs_extent_data_ref *ref)
1092 : {
1093 799 : return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1094 : btrfs_extent_data_ref_objectid(leaf, ref),
1095 : btrfs_extent_data_ref_offset(leaf, ref));
1096 : }
1097 :
1098 19777 : static int match_extent_data_ref(struct extent_buffer *leaf,
1099 : struct btrfs_extent_data_ref *ref,
1100 : u64 root_objectid, u64 owner, u64 offset)
1101 : {
1102 38786 : if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1103 18984 : btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1104 : btrfs_extent_data_ref_offset(leaf, ref) != offset)
1105 : return 0;
1106 : return 1;
1107 : }
1108 :
1109 0 : static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1110 : struct btrfs_root *root,
1111 : struct btrfs_path *path,
1112 : u64 bytenr, u64 parent,
1113 : u64 root_objectid,
1114 : u64 owner, u64 offset)
1115 : {
1116 : struct btrfs_key key;
1117 : struct btrfs_extent_data_ref *ref;
1118 0 : struct extent_buffer *leaf;
1119 : u32 nritems;
1120 : int ret;
1121 : int recow;
1122 : int err = -ENOENT;
1123 :
1124 0 : key.objectid = bytenr;
1125 0 : if (parent) {
1126 0 : key.type = BTRFS_SHARED_DATA_REF_KEY;
1127 0 : key.offset = parent;
1128 : } else {
1129 0 : key.type = BTRFS_EXTENT_DATA_REF_KEY;
1130 0 : key.offset = hash_extent_data_ref(root_objectid,
1131 : owner, offset);
1132 : }
1133 : again:
1134 : recow = 0;
1135 0 : ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1136 0 : if (ret < 0) {
1137 : err = ret;
1138 : goto fail;
1139 : }
1140 :
1141 0 : if (parent) {
1142 0 : if (!ret)
1143 : return 0;
1144 : #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1145 0 : key.type = BTRFS_EXTENT_REF_V0_KEY;
1146 0 : btrfs_release_path(path);
1147 0 : ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1148 0 : if (ret < 0) {
1149 : err = ret;
1150 : goto fail;
1151 : }
1152 0 : if (!ret)
1153 : return 0;
1154 : #endif
1155 : goto fail;
1156 : }
1157 :
1158 0 : leaf = path->nodes[0];
1159 : nritems = btrfs_header_nritems(leaf);
1160 : while (1) {
1161 0 : if (path->slots[0] >= nritems) {
1162 0 : ret = btrfs_next_leaf(root, path);
1163 0 : if (ret < 0)
1164 : err = ret;
1165 0 : if (ret)
1166 : goto fail;
1167 :
1168 0 : leaf = path->nodes[0];
1169 : nritems = btrfs_header_nritems(leaf);
1170 : recow = 1;
1171 : }
1172 :
1173 0 : btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1174 0 : if (key.objectid != bytenr ||
1175 0 : key.type != BTRFS_EXTENT_DATA_REF_KEY)
1176 : goto fail;
1177 :
1178 0 : ref = btrfs_item_ptr(leaf, path->slots[0],
1179 : struct btrfs_extent_data_ref);
1180 :
1181 0 : if (match_extent_data_ref(leaf, ref, root_objectid,
1182 : owner, offset)) {
1183 0 : if (recow) {
1184 0 : btrfs_release_path(path);
1185 0 : goto again;
1186 : }
1187 : err = 0;
1188 : break;
1189 : }
1190 0 : path->slots[0]++;
1191 0 : }
1192 : fail:
1193 0 : return err;
1194 : }
1195 :
1196 0 : static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1197 : struct btrfs_root *root,
1198 : struct btrfs_path *path,
1199 : u64 bytenr, u64 parent,
1200 : u64 root_objectid, u64 owner,
1201 : u64 offset, int refs_to_add)
1202 : {
1203 : struct btrfs_key key;
1204 : struct extent_buffer *leaf;
1205 : u32 size;
1206 : u32 num_refs;
1207 : int ret;
1208 :
1209 0 : key.objectid = bytenr;
1210 0 : if (parent) {
1211 0 : key.type = BTRFS_SHARED_DATA_REF_KEY;
1212 0 : key.offset = parent;
1213 : size = sizeof(struct btrfs_shared_data_ref);
1214 : } else {
1215 0 : key.type = BTRFS_EXTENT_DATA_REF_KEY;
1216 0 : key.offset = hash_extent_data_ref(root_objectid,
1217 : owner, offset);
1218 : size = sizeof(struct btrfs_extent_data_ref);
1219 : }
1220 :
1221 : ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1222 0 : if (ret && ret != -EEXIST)
1223 : goto fail;
1224 :
1225 0 : leaf = path->nodes[0];
1226 0 : if (parent) {
1227 : struct btrfs_shared_data_ref *ref;
1228 0 : ref = btrfs_item_ptr(leaf, path->slots[0],
1229 : struct btrfs_shared_data_ref);
1230 0 : if (ret == 0) {
1231 0 : btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1232 : } else {
1233 : num_refs = btrfs_shared_data_ref_count(leaf, ref);
1234 0 : num_refs += refs_to_add;
1235 : btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1236 : }
1237 : } else {
1238 : struct btrfs_extent_data_ref *ref;
1239 0 : while (ret == -EEXIST) {
1240 0 : ref = btrfs_item_ptr(leaf, path->slots[0],
1241 : struct btrfs_extent_data_ref);
1242 0 : if (match_extent_data_ref(leaf, ref, root_objectid,
1243 : owner, offset))
1244 : break;
1245 0 : btrfs_release_path(path);
1246 0 : key.offset++;
1247 : ret = btrfs_insert_empty_item(trans, root, path, &key,
1248 : size);
1249 0 : if (ret && ret != -EEXIST)
1250 : goto fail;
1251 :
1252 0 : leaf = path->nodes[0];
1253 : }
1254 0 : ref = btrfs_item_ptr(leaf, path->slots[0],
1255 : struct btrfs_extent_data_ref);
1256 0 : if (ret == 0) {
1257 : btrfs_set_extent_data_ref_root(leaf, ref,
1258 : root_objectid);
1259 : btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1260 : btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1261 0 : btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1262 : } else {
1263 : num_refs = btrfs_extent_data_ref_count(leaf, ref);
1264 0 : num_refs += refs_to_add;
1265 : btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1266 : }
1267 : }
1268 0 : btrfs_mark_buffer_dirty(leaf);
1269 : ret = 0;
1270 : fail:
1271 0 : btrfs_release_path(path);
1272 0 : return ret;
1273 : }
1274 :
1275 0 : static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1276 : struct btrfs_root *root,
1277 : struct btrfs_path *path,
1278 : int refs_to_drop, int *last_ref)
1279 : {
1280 : struct btrfs_key key;
1281 : struct btrfs_extent_data_ref *ref1 = NULL;
1282 : struct btrfs_shared_data_ref *ref2 = NULL;
1283 : struct extent_buffer *leaf;
1284 : u32 num_refs = 0;
1285 : int ret = 0;
1286 :
1287 0 : leaf = path->nodes[0];
1288 0 : btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1289 :
1290 0 : if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1291 0 : ref1 = btrfs_item_ptr(leaf, path->slots[0],
1292 : struct btrfs_extent_data_ref);
1293 : num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1294 0 : } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1295 0 : ref2 = btrfs_item_ptr(leaf, path->slots[0],
1296 : struct btrfs_shared_data_ref);
1297 : num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1298 : #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1299 0 : } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1300 : struct btrfs_extent_ref_v0 *ref0;
1301 0 : ref0 = btrfs_item_ptr(leaf, path->slots[0],
1302 : struct btrfs_extent_ref_v0);
1303 : num_refs = btrfs_ref_count_v0(leaf, ref0);
1304 : #endif
1305 : } else {
1306 0 : BUG();
1307 : }
1308 :
1309 0 : BUG_ON(num_refs < refs_to_drop);
1310 0 : num_refs -= refs_to_drop;
1311 :
1312 0 : if (num_refs == 0) {
1313 : ret = btrfs_del_item(trans, root, path);
1314 0 : *last_ref = 1;
1315 : } else {
1316 0 : if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1317 : btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1318 0 : else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1319 : btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1320 : #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1321 : else {
1322 : struct btrfs_extent_ref_v0 *ref0;
1323 0 : ref0 = btrfs_item_ptr(leaf, path->slots[0],
1324 : struct btrfs_extent_ref_v0);
1325 : btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1326 : }
1327 : #endif
1328 0 : btrfs_mark_buffer_dirty(leaf);
1329 : }
1330 0 : return ret;
1331 : }
1332 :
1333 15648 : static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1334 : struct btrfs_path *path,
1335 : struct btrfs_extent_inline_ref *iref)
1336 : {
1337 : struct btrfs_key key;
1338 : struct extent_buffer *leaf;
1339 : struct btrfs_extent_data_ref *ref1;
1340 : struct btrfs_shared_data_ref *ref2;
1341 : u32 num_refs = 0;
1342 :
1343 15648 : leaf = path->nodes[0];
1344 15648 : btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1345 15648 : if (iref) {
1346 15648 : if (btrfs_extent_inline_ref_type(leaf, iref) ==
1347 : BTRFS_EXTENT_DATA_REF_KEY) {
1348 13178 : ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1349 : num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1350 : } else {
1351 2470 : ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1352 : num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1353 : }
1354 0 : } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1355 0 : ref1 = btrfs_item_ptr(leaf, path->slots[0],
1356 : struct btrfs_extent_data_ref);
1357 : num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1358 0 : } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1359 0 : ref2 = btrfs_item_ptr(leaf, path->slots[0],
1360 : struct btrfs_shared_data_ref);
1361 : num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1362 : #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1363 0 : } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1364 : struct btrfs_extent_ref_v0 *ref0;
1365 0 : ref0 = btrfs_item_ptr(leaf, path->slots[0],
1366 : struct btrfs_extent_ref_v0);
1367 : num_refs = btrfs_ref_count_v0(leaf, ref0);
1368 : #endif
1369 : } else {
1370 0 : WARN_ON(1);
1371 : }
1372 15648 : return num_refs;
1373 : }
1374 :
1375 0 : static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1376 : struct btrfs_root *root,
1377 : struct btrfs_path *path,
1378 : u64 bytenr, u64 parent,
1379 : u64 root_objectid)
1380 : {
1381 : struct btrfs_key key;
1382 : int ret;
1383 :
1384 0 : key.objectid = bytenr;
1385 0 : if (parent) {
1386 0 : key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1387 0 : key.offset = parent;
1388 : } else {
1389 0 : key.type = BTRFS_TREE_BLOCK_REF_KEY;
1390 0 : key.offset = root_objectid;
1391 : }
1392 :
1393 0 : ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1394 0 : if (ret > 0)
1395 : ret = -ENOENT;
1396 : #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1397 0 : if (ret == -ENOENT && parent) {
1398 0 : btrfs_release_path(path);
1399 0 : key.type = BTRFS_EXTENT_REF_V0_KEY;
1400 0 : ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1401 0 : if (ret > 0)
1402 : ret = -ENOENT;
1403 : }
1404 : #endif
1405 0 : return ret;
1406 : }
1407 :
1408 0 : static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1409 : struct btrfs_root *root,
1410 : struct btrfs_path *path,
1411 : u64 bytenr, u64 parent,
1412 : u64 root_objectid)
1413 : {
1414 : struct btrfs_key key;
1415 : int ret;
1416 :
1417 0 : key.objectid = bytenr;
1418 0 : if (parent) {
1419 0 : key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1420 0 : key.offset = parent;
1421 : } else {
1422 0 : key.type = BTRFS_TREE_BLOCK_REF_KEY;
1423 0 : key.offset = root_objectid;
1424 : }
1425 :
1426 : ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1427 0 : btrfs_release_path(path);
1428 0 : return ret;
1429 : }
1430 :
1431 : static inline int extent_ref_type(u64 parent, u64 owner)
1432 : {
1433 : int type;
1434 105106 : if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1435 56108 : if (parent > 0)
1436 : type = BTRFS_SHARED_BLOCK_REF_KEY;
1437 : else
1438 : type = BTRFS_TREE_BLOCK_REF_KEY;
1439 : } else {
1440 48998 : if (parent > 0)
1441 : type = BTRFS_SHARED_DATA_REF_KEY;
1442 : else
1443 : type = BTRFS_EXTENT_DATA_REF_KEY;
1444 : }
1445 : return type;
1446 : }
1447 :
1448 16646 : static int find_next_key(struct btrfs_path *path, int level,
1449 : struct btrfs_key *key)
1450 :
1451 : {
1452 34128 : for (; level < BTRFS_MAX_LEVEL; level++) {
1453 34033 : if (!path->nodes[level])
1454 : break;
1455 33938 : if (path->slots[level] + 1 >=
1456 : btrfs_header_nritems(path->nodes[level]))
1457 418 : continue;
1458 16551 : if (level == 0)
1459 16231 : btrfs_item_key_to_cpu(path->nodes[level], key,
1460 : path->slots[level] + 1);
1461 : else
1462 : btrfs_node_key_to_cpu(path->nodes[level], key,
1463 : path->slots[level] + 1);
1464 : return 0;
1465 : }
1466 : return 1;
1467 : }
1468 :
1469 : /*
1470 : * look for inline back ref. if back ref is found, *ref_ret is set
1471 : * to the address of inline back ref, and 0 is returned.
1472 : *
1473 : * if back ref isn't found, *ref_ret is set to the address where it
1474 : * should be inserted, and -ENOENT is returned.
1475 : *
1476 : * if insert is true and there are too many inline back refs, the path
1477 : * points to the extent item, and -EAGAIN is returned.
1478 : *
1479 : * NOTE: inline back refs are ordered in the same way that back ref
1480 : * items in the tree are ordered.
1481 : */
1482 : static noinline_for_stack
1483 88585 : int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1484 : struct btrfs_root *root,
1485 : struct btrfs_path *path,
1486 : struct btrfs_extent_inline_ref **ref_ret,
1487 : u64 bytenr, u64 num_bytes,
1488 : u64 parent, u64 root_objectid,
1489 : u64 owner, u64 offset, int insert)
1490 : {
1491 : struct btrfs_key key;
1492 : struct extent_buffer *leaf;
1493 : struct btrfs_extent_item *ei;
1494 : struct btrfs_extent_inline_ref *iref;
1495 : u64 flags;
1496 : u64 item_size;
1497 : unsigned long ptr;
1498 : unsigned long end;
1499 : int extra_size;
1500 : int type;
1501 : int want;
1502 : int ret;
1503 : int err = 0;
1504 88585 : bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1505 : SKINNY_METADATA);
1506 :
1507 88585 : key.objectid = bytenr;
1508 88585 : key.type = BTRFS_EXTENT_ITEM_KEY;
1509 88585 : key.offset = num_bytes;
1510 :
1511 : want = extent_ref_type(parent, owner);
1512 88585 : if (insert) {
1513 17520 : extra_size = btrfs_extent_inline_ref_size(want);
1514 17520 : path->keep_locks = 1;
1515 : } else
1516 : extra_size = -1;
1517 :
1518 : /*
1519 : * Owner is our parent level, so we can just add one to get the level
1520 : * for the block we are interested in.
1521 : */
1522 88585 : if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1523 0 : key.type = BTRFS_METADATA_ITEM_KEY;
1524 0 : key.offset = owner;
1525 : }
1526 :
1527 : again:
1528 88585 : ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1529 88586 : if (ret < 0) {
1530 : err = ret;
1531 : goto out;
1532 : }
1533 :
1534 : /*
1535 : * We may be a newly converted file system which still has the old fat
1536 : * extent entries for metadata, so try and see if we have one of those.
1537 : */
1538 88586 : if (ret > 0 && skinny_metadata) {
1539 : skinny_metadata = false;
1540 0 : if (path->slots[0]) {
1541 0 : path->slots[0]--;
1542 0 : btrfs_item_key_to_cpu(path->nodes[0], &key,
1543 : path->slots[0]);
1544 0 : if (key.objectid == bytenr &&
1545 0 : key.type == BTRFS_EXTENT_ITEM_KEY &&
1546 0 : key.offset == num_bytes)
1547 : ret = 0;
1548 : }
1549 0 : if (ret) {
1550 0 : key.objectid = bytenr;
1551 0 : key.type = BTRFS_EXTENT_ITEM_KEY;
1552 0 : key.offset = num_bytes;
1553 0 : btrfs_release_path(path);
1554 0 : goto again;
1555 : }
1556 : }
1557 :
1558 88586 : if (ret && !insert) {
1559 : err = -ENOENT;
1560 : goto out;
1561 88586 : } else if (WARN_ON(ret)) {
1562 : err = -EIO;
1563 : goto out;
1564 : }
1565 :
1566 88586 : leaf = path->nodes[0];
1567 177172 : item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1568 : #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1569 88586 : if (item_size < sizeof(*ei)) {
1570 0 : if (!insert) {
1571 : err = -ENOENT;
1572 : goto out;
1573 : }
1574 0 : ret = convert_extent_item_v0(trans, root, path, owner,
1575 : extra_size);
1576 0 : if (ret < 0) {
1577 : err = ret;
1578 : goto out;
1579 : }
1580 0 : leaf = path->nodes[0];
1581 0 : item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1582 : }
1583 : #endif
1584 88586 : BUG_ON(item_size < sizeof(*ei));
1585 :
1586 177172 : ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1587 : flags = btrfs_extent_flags(leaf, ei);
1588 :
1589 88586 : ptr = (unsigned long)(ei + 1);
1590 88586 : end = (unsigned long)ei + item_size;
1591 :
1592 88586 : if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1593 52697 : ptr += sizeof(struct btrfs_tree_block_info);
1594 52697 : BUG_ON(ptr > end);
1595 : }
1596 :
1597 : err = -ENOENT;
1598 : while (1) {
1599 102559 : if (ptr >= end) {
1600 5226 : WARN_ON(ptr > end);
1601 : break;
1602 : }
1603 97333 : iref = (struct btrfs_extent_inline_ref *)ptr;
1604 97333 : type = btrfs_extent_inline_ref_type(leaf, iref);
1605 97333 : if (want < type)
1606 : break;
1607 96498 : if (want > type) {
1608 12436 : ptr += btrfs_extent_inline_ref_size(type);
1609 12436 : continue;
1610 : }
1611 :
1612 84062 : if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1613 : struct btrfs_extent_data_ref *dref;
1614 19777 : dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1615 19777 : if (match_extent_data_ref(leaf, dref, root_objectid,
1616 : owner, offset)) {
1617 : err = 0;
1618 : break;
1619 : }
1620 1598 : if (hash_extent_data_ref_item(leaf, dref) <
1621 799 : hash_extent_data_ref(root_objectid, owner, offset))
1622 : break;
1623 : } else {
1624 : u64 ref_offset;
1625 : ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1626 64285 : if (parent > 0) {
1627 12174 : if (parent == ref_offset) {
1628 : err = 0;
1629 : break;
1630 : }
1631 7715 : if (ref_offset < parent)
1632 : break;
1633 : } else {
1634 52111 : if (root_objectid == ref_offset) {
1635 : err = 0;
1636 : break;
1637 : }
1638 3482 : if (ref_offset < root_objectid)
1639 : break;
1640 : }
1641 : }
1642 1537 : ptr += btrfs_extent_inline_ref_size(type);
1643 : }
1644 88587 : if (err == -ENOENT && insert) {
1645 33042 : if (item_size + extra_size >=
1646 16521 : BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1647 : err = -EAGAIN;
1648 : goto out;
1649 : }
1650 : /*
1651 : * To add new inline back ref, we have to make sure
1652 : * there is no corresponding back ref item.
1653 : * For simplicity, we just do not add new inline back
1654 : * ref if there is any kind of item for this block
1655 : */
1656 33036 : if (find_next_key(path, 0, &key) == 0 &&
1657 16540 : key.objectid == bytenr &&
1658 25 : key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1659 : err = -EAGAIN;
1660 : goto out;
1661 : }
1662 : }
1663 88587 : *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1664 : out:
1665 88587 : if (insert) {
1666 17521 : path->keep_locks = 0;
1667 17521 : btrfs_unlock_up_safe(path, 1);
1668 : }
1669 88587 : return err;
1670 : }
1671 :
1672 : /*
1673 : * helper to add new inline back ref
1674 : */
1675 : static noinline_for_stack
1676 16521 : void setup_inline_extent_backref(struct btrfs_root *root,
1677 : struct btrfs_path *path,
1678 : struct btrfs_extent_inline_ref *iref,
1679 : u64 parent, u64 root_objectid,
1680 : u64 owner, u64 offset, int refs_to_add,
1681 : struct btrfs_delayed_extent_op *extent_op)
1682 : {
1683 : struct extent_buffer *leaf;
1684 : struct btrfs_extent_item *ei;
1685 : unsigned long ptr;
1686 : unsigned long end;
1687 : unsigned long item_offset;
1688 : u64 refs;
1689 : int size;
1690 : int type;
1691 :
1692 16521 : leaf = path->nodes[0];
1693 33042 : ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1694 16521 : item_offset = (unsigned long)iref - (unsigned long)ei;
1695 :
1696 : type = extent_ref_type(parent, owner);
1697 16521 : size = btrfs_extent_inline_ref_size(type);
1698 :
1699 16521 : btrfs_extend_item(root, path, size);
1700 :
1701 33042 : ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1702 : refs = btrfs_extent_refs(leaf, ei);
1703 16521 : refs += refs_to_add;
1704 : btrfs_set_extent_refs(leaf, ei, refs);
1705 16521 : if (extent_op)
1706 105 : __run_delayed_extent_op(extent_op, leaf, ei);
1707 :
1708 16521 : ptr = (unsigned long)ei + item_offset;
1709 33042 : end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1710 16521 : if (ptr < end - size)
1711 11295 : memmove_extent_buffer(leaf, ptr + size, ptr,
1712 : end - size - ptr);
1713 :
1714 16521 : iref = (struct btrfs_extent_inline_ref *)ptr;
1715 16521 : btrfs_set_extent_inline_ref_type(leaf, iref, type);
1716 16521 : if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1717 : struct btrfs_extent_data_ref *dref;
1718 1399 : dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1719 : btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1720 : btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1721 : btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1722 1399 : btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1723 15122 : } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1724 : struct btrfs_shared_data_ref *sref;
1725 11710 : sref = (struct btrfs_shared_data_ref *)(iref + 1);
1726 11710 : btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1727 : btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1728 3412 : } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1729 : btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1730 : } else {
1731 : btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1732 : }
1733 16521 : btrfs_mark_buffer_dirty(leaf);
1734 16521 : }
1735 :
1736 71064 : static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1737 : struct btrfs_root *root,
1738 : struct btrfs_path *path,
1739 : struct btrfs_extent_inline_ref **ref_ret,
1740 : u64 bytenr, u64 num_bytes, u64 parent,
1741 : u64 root_objectid, u64 owner, u64 offset)
1742 : {
1743 : int ret;
1744 :
1745 71064 : ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1746 : bytenr, num_bytes, parent,
1747 : root_objectid, owner, offset, 0);
1748 71066 : if (ret != -ENOENT)
1749 : return ret;
1750 :
1751 0 : btrfs_release_path(path);
1752 0 : *ref_ret = NULL;
1753 :
1754 0 : if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1755 0 : ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1756 : root_objectid);
1757 : } else {
1758 0 : ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1759 : root_objectid, owner, offset);
1760 : }
1761 0 : return ret;
1762 : }
1763 :
1764 : /*
1765 : * helper to update/remove inline back ref
1766 : */
1767 : static noinline_for_stack
1768 7795 : void update_inline_extent_backref(struct btrfs_root *root,
1769 : struct btrfs_path *path,
1770 : struct btrfs_extent_inline_ref *iref,
1771 : int refs_to_mod,
1772 : struct btrfs_delayed_extent_op *extent_op,
1773 : int *last_ref)
1774 : {
1775 : struct extent_buffer *leaf;
1776 : struct btrfs_extent_item *ei;
1777 : struct btrfs_extent_data_ref *dref = NULL;
1778 : struct btrfs_shared_data_ref *sref = NULL;
1779 : unsigned long ptr;
1780 : unsigned long end;
1781 : u32 item_size;
1782 : int size;
1783 : int type;
1784 : u64 refs;
1785 :
1786 7795 : leaf = path->nodes[0];
1787 15590 : ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1788 : refs = btrfs_extent_refs(leaf, ei);
1789 7795 : WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1790 7795 : refs += refs_to_mod;
1791 : btrfs_set_extent_refs(leaf, ei, refs);
1792 7795 : if (extent_op)
1793 0 : __run_delayed_extent_op(extent_op, leaf, ei);
1794 :
1795 7795 : type = btrfs_extent_inline_ref_type(leaf, iref);
1796 :
1797 7795 : if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1798 5800 : dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1799 5800 : refs = btrfs_extent_data_ref_count(leaf, dref);
1800 1995 : } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1801 1333 : sref = (struct btrfs_shared_data_ref *)(iref + 1);
1802 1333 : refs = btrfs_shared_data_ref_count(leaf, sref);
1803 : } else {
1804 : refs = 1;
1805 662 : BUG_ON(refs_to_mod != -1);
1806 : }
1807 :
1808 7795 : BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1809 7795 : refs += refs_to_mod;
1810 :
1811 7795 : if (refs > 0) {
1812 1148 : if (type == BTRFS_EXTENT_DATA_REF_KEY)
1813 1148 : btrfs_set_extent_data_ref_count(leaf, dref, refs);
1814 : else
1815 0 : btrfs_set_shared_data_ref_count(leaf, sref, refs);
1816 : } else {
1817 6647 : *last_ref = 1;
1818 6647 : size = btrfs_extent_inline_ref_size(type);
1819 6647 : item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1820 6647 : ptr = (unsigned long)iref;
1821 6647 : end = (unsigned long)ei + item_size;
1822 6647 : if (ptr + size < end)
1823 4850 : memmove_extent_buffer(leaf, ptr, ptr + size,
1824 4850 : end - ptr - size);
1825 6647 : item_size -= size;
1826 6647 : btrfs_truncate_item(root, path, item_size, 1);
1827 : }
1828 7795 : btrfs_mark_buffer_dirty(leaf);
1829 7795 : }
1830 :
1831 : static noinline_for_stack
1832 17521 : int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1833 : struct btrfs_root *root,
1834 : struct btrfs_path *path,
1835 : u64 bytenr, u64 num_bytes, u64 parent,
1836 : u64 root_objectid, u64 owner,
1837 : u64 offset, int refs_to_add,
1838 : struct btrfs_delayed_extent_op *extent_op)
1839 : {
1840 : struct btrfs_extent_inline_ref *iref;
1841 : int ret;
1842 :
1843 17521 : ret = lookup_inline_extent_backref(trans, root, path, &iref,
1844 : bytenr, num_bytes, parent,
1845 : root_objectid, owner, offset, 1);
1846 17521 : if (ret == 0) {
1847 1000 : BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1848 1000 : update_inline_extent_backref(root, path, iref,
1849 : refs_to_add, extent_op, NULL);
1850 16521 : } else if (ret == -ENOENT) {
1851 16521 : setup_inline_extent_backref(root, path, iref, parent,
1852 : root_objectid, owner, offset,
1853 : refs_to_add, extent_op);
1854 : ret = 0;
1855 : }
1856 17521 : return ret;
1857 : }
1858 :
1859 0 : static int insert_extent_backref(struct btrfs_trans_handle *trans,
1860 : struct btrfs_root *root,
1861 : struct btrfs_path *path,
1862 : u64 bytenr, u64 parent, u64 root_objectid,
1863 : u64 owner, u64 offset, int refs_to_add)
1864 : {
1865 : int ret;
1866 0 : if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1867 0 : BUG_ON(refs_to_add != 1);
1868 0 : ret = insert_tree_block_ref(trans, root, path, bytenr,
1869 : parent, root_objectid);
1870 : } else {
1871 0 : ret = insert_extent_data_ref(trans, root, path, bytenr,
1872 : parent, root_objectid,
1873 : owner, offset, refs_to_add);
1874 : }
1875 0 : return ret;
1876 : }
1877 :
1878 6795 : static int remove_extent_backref(struct btrfs_trans_handle *trans,
1879 : struct btrfs_root *root,
1880 : struct btrfs_path *path,
1881 : struct btrfs_extent_inline_ref *iref,
1882 : int refs_to_drop, int is_data, int *last_ref)
1883 : {
1884 : int ret = 0;
1885 :
1886 6795 : BUG_ON(!is_data && refs_to_drop != 1);
1887 6795 : if (iref) {
1888 6795 : update_inline_extent_backref(root, path, iref,
1889 : -refs_to_drop, NULL, last_ref);
1890 0 : } else if (is_data) {
1891 0 : ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1892 : last_ref);
1893 : } else {
1894 0 : *last_ref = 1;
1895 : ret = btrfs_del_item(trans, root, path);
1896 : }
1897 6795 : return ret;
1898 : }
1899 :
1900 : static int btrfs_issue_discard(struct block_device *bdev,
1901 : u64 start, u64 len)
1902 : {
1903 0 : return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1904 : }
1905 :
1906 0 : static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1907 : u64 num_bytes, u64 *actual_bytes)
1908 : {
1909 : int ret;
1910 : u64 discarded_bytes = 0;
1911 0 : struct btrfs_bio *bbio = NULL;
1912 :
1913 :
1914 : /* Tell the block device(s) that the sectors can be discarded */
1915 0 : ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1916 : bytenr, &num_bytes, &bbio, 0);
1917 : /* Error condition is -ENOMEM */
1918 0 : if (!ret) {
1919 0 : struct btrfs_bio_stripe *stripe = bbio->stripes;
1920 : int i;
1921 :
1922 :
1923 0 : for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1924 0 : if (!stripe->dev->can_discard)
1925 0 : continue;
1926 :
1927 0 : ret = btrfs_issue_discard(stripe->dev->bdev,
1928 : stripe->physical,
1929 : stripe->length);
1930 0 : if (!ret)
1931 0 : discarded_bytes += stripe->length;
1932 0 : else if (ret != -EOPNOTSUPP)
1933 : break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1934 :
1935 : /*
1936 : * Just in case we get back EOPNOTSUPP for some reason,
1937 : * just ignore the return value so we don't screw up
1938 : * people calling discard_extent.
1939 : */
1940 : ret = 0;
1941 : }
1942 0 : kfree(bbio);
1943 : }
1944 :
1945 0 : if (actual_bytes)
1946 0 : *actual_bytes = discarded_bytes;
1947 :
1948 :
1949 0 : if (ret == -EOPNOTSUPP)
1950 : ret = 0;
1951 0 : return ret;
1952 : }
1953 :
1954 : /* Can return -ENOMEM */
1955 21718 : int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1956 : struct btrfs_root *root,
1957 : u64 bytenr, u64 num_bytes, u64 parent,
1958 : u64 root_objectid, u64 owner, u64 offset,
1959 : int no_quota)
1960 : {
1961 : int ret;
1962 21718 : struct btrfs_fs_info *fs_info = root->fs_info;
1963 :
1964 21718 : BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1965 : root_objectid == BTRFS_TREE_LOG_OBJECTID);
1966 :
1967 21718 : if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1968 3458 : ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1969 : num_bytes,
1970 : parent, root_objectid, (int)owner,
1971 : BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1972 : } else {
1973 18260 : ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1974 : num_bytes,
1975 : parent, root_objectid, owner, offset,
1976 : BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1977 : }
1978 21718 : return ret;
1979 : }
1980 :
1981 17521 : static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1982 : struct btrfs_root *root,
1983 : u64 bytenr, u64 num_bytes,
1984 : u64 parent, u64 root_objectid,
1985 : u64 owner, u64 offset, int refs_to_add,
1986 : int no_quota,
1987 : struct btrfs_delayed_extent_op *extent_op)
1988 : {
1989 17521 : struct btrfs_fs_info *fs_info = root->fs_info;
1990 : struct btrfs_path *path;
1991 : struct extent_buffer *leaf;
1992 : struct btrfs_extent_item *item;
1993 : struct btrfs_key key;
1994 : u64 refs;
1995 : int ret;
1996 : enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_ADD_EXCL;
1997 :
1998 17521 : path = btrfs_alloc_path();
1999 17521 : if (!path)
2000 : return -ENOMEM;
2001 :
2002 17521 : if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
2003 : no_quota = 1;
2004 :
2005 17521 : path->reada = 1;
2006 17521 : path->leave_spinning = 1;
2007 : /* this will setup the path even if it fails to insert the back ref */
2008 17521 : ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2009 : bytenr, num_bytes, parent,
2010 : root_objectid, owner, offset,
2011 : refs_to_add, extent_op);
2012 17521 : if ((ret < 0 && ret != -EAGAIN) || (!ret && no_quota))
2013 : goto out;
2014 : /*
2015 : * Ok we were able to insert an inline extent and it appears to be a new
2016 : * reference, deal with the qgroup accounting.
2017 : */
2018 0 : if (!ret && !no_quota) {
2019 : ASSERT(root->fs_info->quota_enabled);
2020 0 : leaf = path->nodes[0];
2021 0 : btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2022 0 : item = btrfs_item_ptr(leaf, path->slots[0],
2023 : struct btrfs_extent_item);
2024 0 : if (btrfs_extent_refs(leaf, item) > (u64)refs_to_add)
2025 : type = BTRFS_QGROUP_OPER_ADD_SHARED;
2026 0 : btrfs_release_path(path);
2027 :
2028 0 : ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2029 : bytenr, num_bytes, type, 0);
2030 0 : goto out;
2031 : }
2032 :
2033 : /*
2034 : * Ok we had -EAGAIN which means we didn't have space to insert and
2035 : * inline extent ref, so just update the reference count and add a
2036 : * normal backref.
2037 : */
2038 0 : leaf = path->nodes[0];
2039 0 : btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2040 0 : item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2041 : refs = btrfs_extent_refs(leaf, item);
2042 0 : if (refs)
2043 : type = BTRFS_QGROUP_OPER_ADD_SHARED;
2044 0 : btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2045 0 : if (extent_op)
2046 0 : __run_delayed_extent_op(extent_op, leaf, item);
2047 :
2048 0 : btrfs_mark_buffer_dirty(leaf);
2049 0 : btrfs_release_path(path);
2050 :
2051 0 : if (!no_quota) {
2052 0 : ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2053 : bytenr, num_bytes, type, 0);
2054 0 : if (ret)
2055 : goto out;
2056 : }
2057 :
2058 0 : path->reada = 1;
2059 0 : path->leave_spinning = 1;
2060 : /* now insert the actual backref */
2061 0 : ret = insert_extent_backref(trans, root->fs_info->extent_root,
2062 : path, bytenr, parent, root_objectid,
2063 : owner, offset, refs_to_add);
2064 0 : if (ret)
2065 0 : btrfs_abort_transaction(trans, root, ret);
2066 : out:
2067 17521 : btrfs_free_path(path);
2068 17521 : return ret;
2069 : }
2070 :
2071 88601 : static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2072 : struct btrfs_root *root,
2073 : struct btrfs_delayed_ref_node *node,
2074 : struct btrfs_delayed_extent_op *extent_op,
2075 : int insert_reserved)
2076 : {
2077 : int ret = 0;
2078 : struct btrfs_delayed_data_ref *ref;
2079 : struct btrfs_key ins;
2080 : u64 parent = 0;
2081 : u64 ref_root = 0;
2082 : u64 flags = 0;
2083 :
2084 88601 : ins.objectid = node->bytenr;
2085 88601 : ins.offset = node->num_bytes;
2086 88601 : ins.type = BTRFS_EXTENT_ITEM_KEY;
2087 :
2088 : ref = btrfs_delayed_node_to_data_ref(node);
2089 88601 : trace_run_delayed_data_ref(node, ref, node->action);
2090 :
2091 88601 : if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2092 15513 : parent = ref->parent;
2093 88601 : ref_root = ref->root;
2094 :
2095 88601 : if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2096 52711 : if (extent_op)
2097 0 : flags |= extent_op->flags_to_set;
2098 52711 : ret = alloc_reserved_file_extent(trans, root,
2099 : parent, ref_root, flags,
2100 : ref->objectid, ref->offset,
2101 : &ins, node->ref_mod);
2102 35890 : } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2103 14109 : ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2104 : node->num_bytes, parent,
2105 : ref_root, ref->objectid,
2106 : ref->offset, node->ref_mod,
2107 14109 : node->no_quota, extent_op);
2108 21781 : } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2109 21781 : ret = __btrfs_free_extent(trans, root, node->bytenr,
2110 : node->num_bytes, parent,
2111 : ref_root, ref->objectid,
2112 : ref->offset, node->ref_mod,
2113 21781 : extent_op, node->no_quota);
2114 : } else {
2115 0 : BUG();
2116 : }
2117 88601 : return ret;
2118 : }
2119 :
2120 412 : static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2121 : struct extent_buffer *leaf,
2122 : struct btrfs_extent_item *ei)
2123 : {
2124 : u64 flags = btrfs_extent_flags(leaf, ei);
2125 412 : if (extent_op->update_flags) {
2126 412 : flags |= extent_op->flags_to_set;
2127 : btrfs_set_extent_flags(leaf, ei, flags);
2128 : }
2129 :
2130 412 : if (extent_op->update_key) {
2131 : struct btrfs_tree_block_info *bi;
2132 0 : BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2133 0 : bi = (struct btrfs_tree_block_info *)(ei + 1);
2134 0 : btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2135 : }
2136 412 : }
2137 :
2138 9 : static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2139 : struct btrfs_root *root,
2140 : struct btrfs_delayed_ref_node *node,
2141 : struct btrfs_delayed_extent_op *extent_op)
2142 : {
2143 : struct btrfs_key key;
2144 : struct btrfs_path *path;
2145 : struct btrfs_extent_item *ei;
2146 : struct extent_buffer *leaf;
2147 : u32 item_size;
2148 : int ret;
2149 : int err = 0;
2150 9 : int metadata = !extent_op->is_data;
2151 :
2152 9 : if (trans->aborted)
2153 : return 0;
2154 :
2155 18 : if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2156 : metadata = 0;
2157 :
2158 9 : path = btrfs_alloc_path();
2159 9 : if (!path)
2160 : return -ENOMEM;
2161 :
2162 9 : key.objectid = node->bytenr;
2163 :
2164 9 : if (metadata) {
2165 0 : key.type = BTRFS_METADATA_ITEM_KEY;
2166 0 : key.offset = extent_op->level;
2167 : } else {
2168 9 : key.type = BTRFS_EXTENT_ITEM_KEY;
2169 9 : key.offset = node->num_bytes;
2170 : }
2171 :
2172 : again:
2173 9 : path->reada = 1;
2174 9 : path->leave_spinning = 1;
2175 9 : ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2176 : path, 0, 1);
2177 9 : if (ret < 0) {
2178 : err = ret;
2179 : goto out;
2180 : }
2181 9 : if (ret > 0) {
2182 0 : if (metadata) {
2183 0 : if (path->slots[0] > 0) {
2184 0 : path->slots[0]--;
2185 0 : btrfs_item_key_to_cpu(path->nodes[0], &key,
2186 : path->slots[0]);
2187 0 : if (key.objectid == node->bytenr &&
2188 0 : key.type == BTRFS_EXTENT_ITEM_KEY &&
2189 0 : key.offset == node->num_bytes)
2190 : ret = 0;
2191 : }
2192 0 : if (ret > 0) {
2193 0 : btrfs_release_path(path);
2194 : metadata = 0;
2195 :
2196 0 : key.objectid = node->bytenr;
2197 0 : key.offset = node->num_bytes;
2198 0 : key.type = BTRFS_EXTENT_ITEM_KEY;
2199 : goto again;
2200 : }
2201 : } else {
2202 : err = -EIO;
2203 : goto out;
2204 : }
2205 : }
2206 :
2207 9 : leaf = path->nodes[0];
2208 9 : item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2209 : #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2210 9 : if (item_size < sizeof(*ei)) {
2211 0 : ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2212 : path, (u64)-1, 0);
2213 0 : if (ret < 0) {
2214 : err = ret;
2215 : goto out;
2216 : }
2217 0 : leaf = path->nodes[0];
2218 0 : item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2219 : }
2220 : #endif
2221 9 : BUG_ON(item_size < sizeof(*ei));
2222 18 : ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2223 9 : __run_delayed_extent_op(extent_op, leaf, ei);
2224 :
2225 9 : btrfs_mark_buffer_dirty(leaf);
2226 : out:
2227 9 : btrfs_free_path(path);
2228 : return err;
2229 : }
2230 :
2231 106070 : static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2232 : struct btrfs_root *root,
2233 : struct btrfs_delayed_ref_node *node,
2234 : struct btrfs_delayed_extent_op *extent_op,
2235 : int insert_reserved)
2236 : {
2237 : int ret = 0;
2238 : struct btrfs_delayed_tree_ref *ref;
2239 : struct btrfs_key ins;
2240 : u64 parent = 0;
2241 : u64 ref_root = 0;
2242 106070 : bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2243 : SKINNY_METADATA);
2244 :
2245 : ref = btrfs_delayed_node_to_tree_ref(node);
2246 106070 : trace_run_delayed_tree_ref(node, ref, node->action);
2247 :
2248 106070 : if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2249 1312 : parent = ref->parent;
2250 106070 : ref_root = ref->root;
2251 :
2252 106070 : ins.objectid = node->bytenr;
2253 106070 : if (skinny_metadata) {
2254 0 : ins.offset = ref->level;
2255 0 : ins.type = BTRFS_METADATA_ITEM_KEY;
2256 : } else {
2257 106070 : ins.offset = node->num_bytes;
2258 106070 : ins.type = BTRFS_EXTENT_ITEM_KEY;
2259 : }
2260 :
2261 106070 : BUG_ON(node->ref_mod != 1);
2262 106070 : if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2263 53373 : BUG_ON(!extent_op || !extent_op->update_flags);
2264 53373 : ret = alloc_reserved_tree_block(trans, root,
2265 : parent, ref_root,
2266 : extent_op->flags_to_set,
2267 : &extent_op->key,
2268 : ref->level, &ins,
2269 53373 : node->no_quota);
2270 52697 : } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2271 6824 : ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2272 : node->num_bytes, parent, ref_root,
2273 6824 : ref->level, 0, 1, node->no_quota,
2274 : extent_op);
2275 49285 : } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2276 98570 : ret = __btrfs_free_extent(trans, root, node->bytenr,
2277 : node->num_bytes, parent, ref_root,
2278 49285 : ref->level, 0, 1, extent_op,
2279 49285 : node->no_quota);
2280 : } else {
2281 0 : BUG();
2282 : }
2283 106070 : return ret;
2284 : }
2285 :
2286 : /* helper function to actually process a single delayed ref entry */
2287 386435 : static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2288 : struct btrfs_root *root,
2289 : struct btrfs_delayed_ref_node *node,
2290 : struct btrfs_delayed_extent_op *extent_op,
2291 : int insert_reserved)
2292 : {
2293 : int ret = 0;
2294 :
2295 386435 : if (trans->aborted) {
2296 0 : if (insert_reserved)
2297 0 : btrfs_pin_extent(root, node->bytenr,
2298 : node->num_bytes, 1);
2299 : return 0;
2300 : }
2301 :
2302 386435 : if (btrfs_delayed_ref_is_head(node)) {
2303 : struct btrfs_delayed_ref_head *head;
2304 : /*
2305 : * we've hit the end of the chain and we were supposed
2306 : * to insert this extent into the tree. But, it got
2307 : * deleted before we ever needed to insert it, so all
2308 : * we have to do is clean up the accounting
2309 : */
2310 191764 : BUG_ON(extent_op);
2311 : head = btrfs_delayed_node_to_head(node);
2312 191764 : trace_run_delayed_ref_head(node, head, node->action);
2313 :
2314 191764 : if (insert_reserved) {
2315 889 : btrfs_pin_extent(root, node->bytenr,
2316 : node->num_bytes, 1);
2317 889 : if (head->is_data) {
2318 620 : ret = btrfs_del_csums(trans, root,
2319 : node->bytenr,
2320 : node->num_bytes);
2321 : }
2322 : }
2323 191764 : return ret;
2324 : }
2325 :
2326 194671 : if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2327 : node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2328 106070 : ret = run_delayed_tree_ref(trans, root, node, extent_op,
2329 : insert_reserved);
2330 88601 : else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2331 : node->type == BTRFS_SHARED_DATA_REF_KEY)
2332 88601 : ret = run_delayed_data_ref(trans, root, node, extent_op,
2333 : insert_reserved);
2334 : else
2335 0 : BUG();
2336 194671 : return ret;
2337 : }
2338 :
2339 : static noinline struct btrfs_delayed_ref_node *
2340 386450 : select_delayed_ref(struct btrfs_delayed_ref_head *head)
2341 : {
2342 : struct rb_node *node;
2343 : struct btrfs_delayed_ref_node *ref, *last = NULL;;
2344 :
2345 : /*
2346 : * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2347 : * this prevents ref count from going down to zero when
2348 : * there still are pending delayed ref.
2349 : */
2350 386450 : node = rb_first(&head->ref_root);
2351 849080 : while (node) {
2352 : ref = rb_entry(node, struct btrfs_delayed_ref_node,
2353 : rb_node);
2354 199788 : if (ref->action == BTRFS_ADD_DELAYED_REF)
2355 : return ref;
2356 76180 : else if (last == NULL)
2357 : last = ref;
2358 76180 : node = rb_next(node);
2359 : }
2360 : return last;
2361 : }
2362 :
2363 : /*
2364 : * Returns 0 on success or if called with an already aborted transaction.
2365 : * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2366 : */
2367 41040 : static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2368 : struct btrfs_root *root,
2369 : unsigned long nr)
2370 : {
2371 : struct btrfs_delayed_ref_root *delayed_refs;
2372 : struct btrfs_delayed_ref_node *ref;
2373 : struct btrfs_delayed_ref_head *locked_ref = NULL;
2374 : struct btrfs_delayed_extent_op *extent_op;
2375 41040 : struct btrfs_fs_info *fs_info = root->fs_info;
2376 41040 : ktime_t start = ktime_get();
2377 : int ret;
2378 : unsigned long count = 0;
2379 : unsigned long actual_count = 0;
2380 : int must_insert_reserved = 0;
2381 :
2382 41041 : delayed_refs = &trans->transaction->delayed_refs;
2383 : while (1) {
2384 427488 : if (!locked_ref) {
2385 232811 : if (count >= nr)
2386 : break;
2387 :
2388 : spin_lock(&delayed_refs->lock);
2389 228327 : locked_ref = btrfs_select_ref_head(trans);
2390 228327 : if (!locked_ref) {
2391 : spin_unlock(&delayed_refs->lock);
2392 : break;
2393 : }
2394 :
2395 : /* grab the lock that says we are going to process
2396 : * all the refs for this head */
2397 191772 : ret = btrfs_delayed_ref_lock(trans, locked_ref);
2398 : spin_unlock(&delayed_refs->lock);
2399 : /*
2400 : * we may have dropped the spin lock to get the head
2401 : * mutex lock, and that might have given someone else
2402 : * time to free the head. If that's true, it has been
2403 : * removed from our list and we can move on.
2404 : */
2405 191772 : if (ret == -EAGAIN) {
2406 : locked_ref = NULL;
2407 0 : count++;
2408 0 : continue;
2409 : }
2410 : }
2411 :
2412 : /*
2413 : * We need to try and merge add/drops of the same ref since we
2414 : * can run into issues with relocate dropping the implicit ref
2415 : * and then it being added back again before the drop can
2416 : * finish. If we merged anything we need to re-loop so we can
2417 : * get a good ref.
2418 : */
2419 : spin_lock(&locked_ref->lock);
2420 386444 : btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2421 : locked_ref);
2422 :
2423 : /*
2424 : * locked_ref is the head node, so we have to go one
2425 : * node back for any delayed ref updates
2426 : */
2427 386450 : ref = select_delayed_ref(locked_ref);
2428 :
2429 401097 : if (ref && ref->seq &&
2430 14648 : btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2431 : spin_unlock(&locked_ref->lock);
2432 : btrfs_delayed_ref_unlock(locked_ref);
2433 : spin_lock(&delayed_refs->lock);
2434 8 : locked_ref->processing = 0;
2435 8 : delayed_refs->num_heads_ready++;
2436 : spin_unlock(&delayed_refs->lock);
2437 : locked_ref = NULL;
2438 8 : cond_resched();
2439 8 : count++;
2440 8 : continue;
2441 : }
2442 :
2443 : /*
2444 : * record the must insert reserved flag before we
2445 : * drop the spin lock.
2446 : */
2447 386441 : must_insert_reserved = locked_ref->must_insert_reserved;
2448 386441 : locked_ref->must_insert_reserved = 0;
2449 :
2450 386441 : extent_op = locked_ref->extent_op;
2451 386441 : locked_ref->extent_op = NULL;
2452 :
2453 386441 : if (!ref) {
2454 :
2455 :
2456 : /* All delayed refs have been processed, Go ahead
2457 : * and send the head node to run_one_delayed_ref,
2458 : * so that any accounting fixes can happen
2459 : */
2460 191769 : ref = &locked_ref->node;
2461 :
2462 191769 : if (extent_op && must_insert_reserved) {
2463 : btrfs_free_delayed_extent_op(extent_op);
2464 : extent_op = NULL;
2465 : }
2466 :
2467 191769 : if (extent_op) {
2468 : spin_unlock(&locked_ref->lock);
2469 9 : ret = run_delayed_extent_op(trans, root,
2470 : ref, extent_op);
2471 : btrfs_free_delayed_extent_op(extent_op);
2472 :
2473 9 : if (ret) {
2474 : /*
2475 : * Need to reset must_insert_reserved if
2476 : * there was an error so the abort stuff
2477 : * can cleanup the reserved space
2478 : * properly.
2479 : */
2480 0 : if (must_insert_reserved)
2481 0 : locked_ref->must_insert_reserved = 1;
2482 0 : locked_ref->processing = 0;
2483 : btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2484 : btrfs_delayed_ref_unlock(locked_ref);
2485 0 : return ret;
2486 : }
2487 9 : continue;
2488 : }
2489 :
2490 : /*
2491 : * Need to drop our head ref lock and re-aqcuire the
2492 : * delayed ref lock and then re-check to make sure
2493 : * nobody got added.
2494 : */
2495 : spin_unlock(&locked_ref->lock);
2496 : spin_lock(&delayed_refs->lock);
2497 : spin_lock(&locked_ref->lock);
2498 383528 : if (rb_first(&locked_ref->ref_root) ||
2499 191764 : locked_ref->extent_op) {
2500 : spin_unlock(&locked_ref->lock);
2501 : spin_unlock(&delayed_refs->lock);
2502 0 : continue;
2503 : }
2504 191764 : ref->in_tree = 0;
2505 191764 : delayed_refs->num_heads--;
2506 191764 : rb_erase(&locked_ref->href_node,
2507 : &delayed_refs->href_root);
2508 : spin_unlock(&delayed_refs->lock);
2509 : } else {
2510 194672 : actual_count++;
2511 194672 : ref->in_tree = 0;
2512 194672 : rb_erase(&ref->rb_node, &locked_ref->ref_root);
2513 : }
2514 386436 : atomic_dec(&delayed_refs->num_entries);
2515 :
2516 386431 : if (!btrfs_delayed_ref_is_head(ref)) {
2517 : /*
2518 : * when we play the delayed ref, also correct the
2519 : * ref_mod on head
2520 : */
2521 194671 : switch (ref->action) {
2522 : case BTRFS_ADD_DELAYED_REF:
2523 : case BTRFS_ADD_DELAYED_EXTENT:
2524 123605 : locked_ref->node.ref_mod -= ref->ref_mod;
2525 123605 : break;
2526 : case BTRFS_DROP_DELAYED_REF:
2527 71066 : locked_ref->node.ref_mod += ref->ref_mod;
2528 71066 : break;
2529 : default:
2530 0 : WARN_ON(1);
2531 : }
2532 : }
2533 : spin_unlock(&locked_ref->lock);
2534 :
2535 386427 : ret = run_one_delayed_ref(trans, root, ref, extent_op,
2536 : must_insert_reserved);
2537 :
2538 : btrfs_free_delayed_extent_op(extent_op);
2539 386430 : if (ret) {
2540 0 : locked_ref->processing = 0;
2541 : btrfs_delayed_ref_unlock(locked_ref);
2542 0 : btrfs_put_delayed_ref(ref);
2543 : btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2544 0 : return ret;
2545 : }
2546 :
2547 : /*
2548 : * If this node is a head, that means all the refs in this head
2549 : * have been dealt with, and we will pick the next head to deal
2550 : * with, so we must unlock the head and drop it from the cluster
2551 : * list before we release it.
2552 : */
2553 386430 : if (btrfs_delayed_ref_is_head(ref)) {
2554 : btrfs_delayed_ref_unlock(locked_ref);
2555 : locked_ref = NULL;
2556 : }
2557 386429 : btrfs_put_delayed_ref(ref);
2558 386432 : count++;
2559 386432 : cond_resched();
2560 : }
2561 :
2562 : /*
2563 : * We don't want to include ref heads since we can have empty ref heads
2564 : * and those will drastically skew our runtime down since we just do
2565 : * accounting, no actual extent tree updates.
2566 : */
2567 41041 : if (actual_count > 0) {
2568 10094 : u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2569 : u64 avg;
2570 :
2571 : /*
2572 : * We weigh the current average higher than our current runtime
2573 : * to avoid large swings in the average.
2574 : */
2575 : spin_lock(&delayed_refs->lock);
2576 10094 : avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2577 : avg = div64_u64(avg, 4);
2578 10094 : fs_info->avg_delayed_ref_runtime = avg;
2579 : spin_unlock(&delayed_refs->lock);
2580 : }
2581 : return 0;
2582 : }
2583 :
2584 : #ifdef SCRAMBLE_DELAYED_REFS
2585 : /*
2586 : * Normally delayed refs get processed in ascending bytenr order. This
2587 : * correlates in most cases to the order added. To expose dependencies on this
2588 : * order, we start to process the tree in the middle instead of the beginning
2589 : */
2590 : static u64 find_middle(struct rb_root *root)
2591 : {
2592 : struct rb_node *n = root->rb_node;
2593 : struct btrfs_delayed_ref_node *entry;
2594 : int alt = 1;
2595 : u64 middle;
2596 : u64 first = 0, last = 0;
2597 :
2598 : n = rb_first(root);
2599 : if (n) {
2600 : entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2601 : first = entry->bytenr;
2602 : }
2603 : n = rb_last(root);
2604 : if (n) {
2605 : entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2606 : last = entry->bytenr;
2607 : }
2608 : n = root->rb_node;
2609 :
2610 : while (n) {
2611 : entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2612 : WARN_ON(!entry->in_tree);
2613 :
2614 : middle = entry->bytenr;
2615 :
2616 : if (alt)
2617 : n = n->rb_left;
2618 : else
2619 : n = n->rb_right;
2620 :
2621 : alt = 1 - alt;
2622 : }
2623 : return middle;
2624 : }
2625 : #endif
2626 :
2627 : static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2628 : {
2629 : u64 num_bytes;
2630 :
2631 173077 : num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2632 : sizeof(struct btrfs_extent_inline_ref));
2633 346154 : if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2634 173076 : num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2635 :
2636 : /*
2637 : * We don't ever fill up leaves all the way so multiply by 2 just to be
2638 : * closer to what we're really going to want to ouse.
2639 : */
2640 173077 : return div64_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2641 : }
2642 :
2643 173077 : int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2644 346154 : struct btrfs_root *root)
2645 : {
2646 : struct btrfs_block_rsv *global_rsv;
2647 173077 : u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2648 : u64 num_bytes;
2649 : int ret = 0;
2650 :
2651 : num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2652 : num_heads = heads_to_leaves(root, num_heads);
2653 173077 : if (num_heads > 1)
2654 45407 : num_bytes += (num_heads - 1) * root->leafsize;
2655 173077 : num_bytes <<= 1;
2656 : global_rsv = &root->fs_info->global_block_rsv;
2657 :
2658 : /*
2659 : * If we can't allocate any more chunks lets make sure we have _lots_ of
2660 : * wiggle room since running delayed refs can create more delayed refs.
2661 : */
2662 173077 : if (global_rsv->space_info->full)
2663 0 : num_bytes <<= 1;
2664 :
2665 : spin_lock(&global_rsv->lock);
2666 173095 : if (global_rsv->reserved <= num_bytes)
2667 : ret = 1;
2668 : spin_unlock(&global_rsv->lock);
2669 173093 : return ret;
2670 : }
2671 :
2672 175227 : int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2673 : struct btrfs_root *root)
2674 : {
2675 175227 : struct btrfs_fs_info *fs_info = root->fs_info;
2676 175227 : u64 num_entries =
2677 175227 : atomic_read(&trans->transaction->delayed_refs.num_entries);
2678 : u64 avg_runtime;
2679 : u64 val;
2680 :
2681 175227 : smp_mb();
2682 175239 : avg_runtime = fs_info->avg_delayed_ref_runtime;
2683 175239 : val = num_entries * avg_runtime;
2684 175239 : if (num_entries * avg_runtime >= NSEC_PER_SEC)
2685 : return 1;
2686 175207 : if (val >= NSEC_PER_SEC / 2)
2687 : return 2;
2688 :
2689 173087 : return btrfs_check_space_for_delayed_refs(trans, root);
2690 : }
2691 :
2692 : struct async_delayed_refs {
2693 : struct btrfs_root *root;
2694 : int count;
2695 : int error;
2696 : int sync;
2697 : struct completion wait;
2698 : struct btrfs_work work;
2699 : };
2700 :
2701 2152 : static void delayed_ref_async_start(struct btrfs_work *work)
2702 : {
2703 : struct async_delayed_refs *async;
2704 : struct btrfs_trans_handle *trans;
2705 : int ret;
2706 :
2707 2152 : async = container_of(work, struct async_delayed_refs, work);
2708 :
2709 2152 : trans = btrfs_join_transaction(async->root);
2710 2152 : if (IS_ERR(trans)) {
2711 0 : async->error = PTR_ERR(trans);
2712 0 : goto done;
2713 : }
2714 :
2715 : /*
2716 : * trans->sync means that when we call end_transaciton, we won't
2717 : * wait on delayed refs
2718 : */
2719 2152 : trans->sync = true;
2720 2152 : ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2721 2152 : if (ret)
2722 0 : async->error = ret;
2723 :
2724 2152 : ret = btrfs_end_transaction(trans, async->root);
2725 2152 : if (ret && !async->error)
2726 0 : async->error = ret;
2727 : done:
2728 2152 : if (async->sync)
2729 31 : complete(&async->wait);
2730 : else
2731 2121 : kfree(async);
2732 2152 : }
2733 :
2734 2152 : int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2735 : unsigned long count, int wait)
2736 : {
2737 : struct async_delayed_refs *async;
2738 : int ret;
2739 :
2740 : async = kmalloc(sizeof(*async), GFP_NOFS);
2741 2152 : if (!async)
2742 : return -ENOMEM;
2743 :
2744 2152 : async->root = root->fs_info->tree_root;
2745 2152 : async->count = count;
2746 2152 : async->error = 0;
2747 2152 : if (wait)
2748 31 : async->sync = 1;
2749 : else
2750 2121 : async->sync = 0;
2751 : init_completion(&async->wait);
2752 :
2753 2152 : btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2754 : delayed_ref_async_start, NULL, NULL);
2755 :
2756 2152 : btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2757 :
2758 2152 : if (wait) {
2759 31 : wait_for_completion(&async->wait);
2760 31 : ret = async->error;
2761 31 : kfree(async);
2762 31 : return ret;
2763 : }
2764 : return 0;
2765 : }
2766 :
2767 : /*
2768 : * this starts processing the delayed reference count updates and
2769 : * extent insertions we have queued up so far. count can be
2770 : * 0, which means to process everything in the tree at the start
2771 : * of the run (but not newly added entries), or it can be some target
2772 : * number you'd like to process.
2773 : *
2774 : * Returns 0 on success or if called with an aborted transaction
2775 : * Returns <0 on error and aborts the transaction
2776 : */
2777 41030 : int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2778 : struct btrfs_root *root, unsigned long count)
2779 : {
2780 : struct rb_node *node;
2781 : struct btrfs_delayed_ref_root *delayed_refs;
2782 : struct btrfs_delayed_ref_head *head;
2783 : int ret;
2784 : int run_all = count == (unsigned long)-1;
2785 : int run_most = 0;
2786 :
2787 : /* We'll clean this up in btrfs_cleanup_transaction */
2788 41030 : if (trans->aborted)
2789 : return 0;
2790 :
2791 41030 : if (root == root->fs_info->extent_root)
2792 16277 : root = root->fs_info->tree_root;
2793 :
2794 41030 : delayed_refs = &trans->transaction->delayed_refs;
2795 41030 : if (count == 0) {
2796 4378 : count = atomic_read(&delayed_refs->num_entries) * 2;
2797 : run_most = 1;
2798 : }
2799 :
2800 : again:
2801 : #ifdef SCRAMBLE_DELAYED_REFS
2802 : delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2803 : #endif
2804 41040 : ret = __btrfs_run_delayed_refs(trans, root, count);
2805 41041 : if (ret < 0) {
2806 0 : btrfs_abort_transaction(trans, root, ret);
2807 0 : return ret;
2808 : }
2809 :
2810 41041 : if (run_all) {
2811 68994 : if (!list_empty(&trans->new_bgs))
2812 22 : btrfs_create_pending_block_groups(trans, root);
2813 :
2814 : spin_lock(&delayed_refs->lock);
2815 34497 : node = rb_first(&delayed_refs->href_root);
2816 34497 : if (!node) {
2817 : spin_unlock(&delayed_refs->lock);
2818 : goto out;
2819 : }
2820 : count = (unsigned long)-1;
2821 :
2822 10 : while (node) {
2823 : head = rb_entry(node, struct btrfs_delayed_ref_head,
2824 : href_node);
2825 10 : if (btrfs_delayed_ref_is_head(&head->node)) {
2826 : struct btrfs_delayed_ref_node *ref;
2827 :
2828 10 : ref = &head->node;
2829 10 : atomic_inc(&ref->refs);
2830 :
2831 : spin_unlock(&delayed_refs->lock);
2832 : /*
2833 : * Mutex was contended, block until it's
2834 : * released and try again
2835 : */
2836 10 : mutex_lock(&head->mutex);
2837 10 : mutex_unlock(&head->mutex);
2838 :
2839 10 : btrfs_put_delayed_ref(ref);
2840 10 : cond_resched();
2841 10 : goto again;
2842 : } else {
2843 0 : WARN_ON(1);
2844 : }
2845 0 : node = rb_next(node);
2846 : }
2847 : spin_unlock(&delayed_refs->lock);
2848 0 : cond_resched();
2849 0 : goto again;
2850 : }
2851 : out:
2852 41031 : ret = btrfs_delayed_qgroup_accounting(trans, root->fs_info);
2853 41031 : if (ret)
2854 : return ret;
2855 41031 : assert_qgroups_uptodate(trans);
2856 41031 : return 0;
2857 : }
2858 :
2859 412 : int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2860 : struct btrfs_root *root,
2861 : u64 bytenr, u64 num_bytes, u64 flags,
2862 : int level, int is_data)
2863 : {
2864 : struct btrfs_delayed_extent_op *extent_op;
2865 : int ret;
2866 :
2867 : extent_op = btrfs_alloc_delayed_extent_op();
2868 412 : if (!extent_op)
2869 : return -ENOMEM;
2870 :
2871 412 : extent_op->flags_to_set = flags;
2872 412 : extent_op->update_flags = 1;
2873 412 : extent_op->update_key = 0;
2874 412 : extent_op->is_data = is_data ? 1 : 0;
2875 412 : extent_op->level = level;
2876 :
2877 412 : ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2878 : num_bytes, extent_op);
2879 412 : if (ret)
2880 : btrfs_free_delayed_extent_op(extent_op);
2881 412 : return ret;
2882 : }
2883 :
2884 6654 : static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2885 : struct btrfs_root *root,
2886 : struct btrfs_path *path,
2887 : u64 objectid, u64 offset, u64 bytenr)
2888 : {
2889 : struct btrfs_delayed_ref_head *head;
2890 : struct btrfs_delayed_ref_node *ref;
2891 : struct btrfs_delayed_data_ref *data_ref;
2892 : struct btrfs_delayed_ref_root *delayed_refs;
2893 : struct rb_node *node;
2894 : int ret = 0;
2895 :
2896 6654 : delayed_refs = &trans->transaction->delayed_refs;
2897 : spin_lock(&delayed_refs->lock);
2898 6654 : head = btrfs_find_delayed_ref_head(trans, bytenr);
2899 6654 : if (!head) {
2900 : spin_unlock(&delayed_refs->lock);
2901 6563 : return 0;
2902 : }
2903 :
2904 91 : if (!mutex_trylock(&head->mutex)) {
2905 0 : atomic_inc(&head->node.refs);
2906 : spin_unlock(&delayed_refs->lock);
2907 :
2908 0 : btrfs_release_path(path);
2909 :
2910 : /*
2911 : * Mutex was contended, block until it's released and let
2912 : * caller try again
2913 : */
2914 0 : mutex_lock(&head->mutex);
2915 0 : mutex_unlock(&head->mutex);
2916 0 : btrfs_put_delayed_ref(&head->node);
2917 0 : return -EAGAIN;
2918 : }
2919 : spin_unlock(&delayed_refs->lock);
2920 :
2921 : spin_lock(&head->lock);
2922 91 : node = rb_first(&head->ref_root);
2923 270 : while (node) {
2924 : ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2925 88 : node = rb_next(node);
2926 :
2927 : /* If it's a shared ref we know a cross reference exists */
2928 88 : if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2929 : ret = 1;
2930 : break;
2931 : }
2932 :
2933 : data_ref = btrfs_delayed_node_to_data_ref(ref);
2934 :
2935 : /*
2936 : * If our ref doesn't match the one we're currently looking at
2937 : * then we have a cross reference.
2938 : */
2939 176 : if (data_ref->root != root->root_key.objectid ||
2940 176 : data_ref->objectid != objectid ||
2941 88 : data_ref->offset != offset) {
2942 : ret = 1;
2943 : break;
2944 : }
2945 : }
2946 : spin_unlock(&head->lock);
2947 91 : mutex_unlock(&head->mutex);
2948 91 : return ret;
2949 : }
2950 :
2951 6754 : static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2952 : struct btrfs_root *root,
2953 : struct btrfs_path *path,
2954 : u64 objectid, u64 offset, u64 bytenr)
2955 : {
2956 6754 : struct btrfs_root *extent_root = root->fs_info->extent_root;
2957 : struct extent_buffer *leaf;
2958 : struct btrfs_extent_data_ref *ref;
2959 : struct btrfs_extent_inline_ref *iref;
2960 : struct btrfs_extent_item *ei;
2961 : struct btrfs_key key;
2962 : u32 item_size;
2963 : int ret;
2964 :
2965 6754 : key.objectid = bytenr;
2966 6754 : key.offset = (u64)-1;
2967 6754 : key.type = BTRFS_EXTENT_ITEM_KEY;
2968 :
2969 6754 : ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2970 6754 : if (ret < 0)
2971 : goto out;
2972 6754 : BUG_ON(ret == 0); /* Corruption */
2973 :
2974 : ret = -ENOENT;
2975 6754 : if (path->slots[0] == 0)
2976 : goto out;
2977 :
2978 6754 : path->slots[0]--;
2979 6754 : leaf = path->nodes[0];
2980 6754 : btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2981 :
2982 6754 : if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2983 : goto out;
2984 :
2985 : ret = 1;
2986 6694 : item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2987 : #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2988 6694 : if (item_size < sizeof(*ei)) {
2989 0 : WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2990 : goto out;
2991 : }
2992 : #endif
2993 13388 : ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2994 :
2995 13388 : if (item_size != sizeof(*ei) +
2996 6694 : btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2997 : goto out;
2998 :
2999 6594 : if (btrfs_extent_generation(leaf, ei) <=
3000 : btrfs_root_last_snapshot(&root->root_item))
3001 : goto out;
3002 :
3003 6594 : iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3004 6594 : if (btrfs_extent_inline_ref_type(leaf, iref) !=
3005 : BTRFS_EXTENT_DATA_REF_KEY)
3006 : goto out;
3007 :
3008 6594 : ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3009 6594 : if (btrfs_extent_refs(leaf, ei) !=
3010 6594 : btrfs_extent_data_ref_count(leaf, ref) ||
3011 : btrfs_extent_data_ref_root(leaf, ref) !=
3012 13188 : root->root_key.objectid ||
3013 6594 : btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3014 : btrfs_extent_data_ref_offset(leaf, ref) != offset)
3015 : goto out;
3016 :
3017 : ret = 0;
3018 : out:
3019 6754 : return ret;
3020 : }
3021 :
3022 6754 : int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3023 : struct btrfs_root *root,
3024 : u64 objectid, u64 offset, u64 bytenr)
3025 : {
3026 : struct btrfs_path *path;
3027 : int ret;
3028 : int ret2;
3029 :
3030 6754 : path = btrfs_alloc_path();
3031 6754 : if (!path)
3032 : return -ENOENT;
3033 :
3034 : do {
3035 6754 : ret = check_committed_ref(trans, root, path, objectid,
3036 : offset, bytenr);
3037 6754 : if (ret && ret != -ENOENT)
3038 : goto out;
3039 :
3040 6654 : ret2 = check_delayed_ref(trans, root, path, objectid,
3041 : offset, bytenr);
3042 6654 : } while (ret2 == -EAGAIN);
3043 :
3044 6654 : if (ret2 && ret2 != -ENOENT) {
3045 : ret = ret2;
3046 : goto out;
3047 : }
3048 :
3049 6654 : if (ret != -ENOENT || ret2 != -ENOENT)
3050 : ret = 0;
3051 : out:
3052 6754 : btrfs_free_path(path);
3053 6754 : if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3054 1021 : WARN_ON(ret > 0);
3055 6754 : return ret;
3056 : }
3057 :
3058 2201 : static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3059 3630 : struct btrfs_root *root,
3060 2201 : struct extent_buffer *buf,
3061 : int full_backref, int inc)
3062 : {
3063 : u64 bytenr;
3064 : u64 num_bytes;
3065 : u64 parent;
3066 : u64 ref_root;
3067 : u32 nritems;
3068 : struct btrfs_key key;
3069 : struct btrfs_file_extent_item *fi;
3070 : int i;
3071 : int level;
3072 : int ret = 0;
3073 : int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3074 : u64, u64, u64, u64, u64, u64, int);
3075 :
3076 : #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3077 : if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state)))
3078 : return 0;
3079 : #endif
3080 : ref_root = btrfs_header_owner(buf);
3081 : nritems = btrfs_header_nritems(buf);
3082 2201 : level = btrfs_header_level(buf);
3083 :
3084 2201 : if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3085 : return 0;
3086 :
3087 2201 : if (inc)
3088 : process_func = btrfs_inc_extent_ref;
3089 : else
3090 : process_func = btrfs_free_extent;
3091 :
3092 2201 : if (full_backref)
3093 1654 : parent = buf->start;
3094 : else
3095 : parent = 0;
3096 :
3097 61341 : for (i = 0; i < nritems; i++) {
3098 59140 : if (level == 0) {
3099 55510 : btrfs_item_key_to_cpu(buf, &key, i);
3100 55510 : if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
3101 30560 : continue;
3102 24950 : fi = btrfs_item_ptr(buf, i,
3103 : struct btrfs_file_extent_item);
3104 24950 : if (btrfs_file_extent_type(buf, fi) ==
3105 : BTRFS_FILE_EXTENT_INLINE)
3106 844 : continue;
3107 : bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3108 24106 : if (bytenr == 0)
3109 3274 : continue;
3110 :
3111 : num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3112 41664 : key.offset -= btrfs_file_extent_offset(buf, fi);
3113 20832 : ret = process_func(trans, root, bytenr, num_bytes,
3114 : parent, ref_root, key.objectid,
3115 : key.offset, 1);
3116 20832 : if (ret)
3117 : goto fail;
3118 : } else {
3119 : bytenr = btrfs_node_blockptr(buf, i);
3120 3630 : num_bytes = btrfs_level_size(root, level - 1);
3121 3630 : ret = process_func(trans, root, bytenr, num_bytes,
3122 3630 : parent, ref_root, level - 1, 0,
3123 : 1);
3124 3630 : if (ret)
3125 : goto fail;
3126 : }
3127 : }
3128 : return 0;
3129 : fail:
3130 0 : return ret;
3131 : }
3132 :
3133 1396 : int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3134 : struct extent_buffer *buf, int full_backref)
3135 : {
3136 1396 : return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3137 : }
3138 :
3139 341 : int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3140 : struct extent_buffer *buf, int full_backref)
3141 : {
3142 794 : return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3143 : }
3144 :
3145 6457 : static int write_one_cache_group(struct btrfs_trans_handle *trans,
3146 : struct btrfs_root *root,
3147 : struct btrfs_path *path,
3148 : struct btrfs_block_group_cache *cache)
3149 : {
3150 : int ret;
3151 6457 : struct btrfs_root *extent_root = root->fs_info->extent_root;
3152 : unsigned long bi;
3153 : struct extent_buffer *leaf;
3154 :
3155 6457 : ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3156 6457 : if (ret < 0)
3157 : goto fail;
3158 6457 : BUG_ON(ret); /* Corruption */
3159 :
3160 6457 : leaf = path->nodes[0];
3161 12914 : bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3162 6457 : write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3163 6457 : btrfs_mark_buffer_dirty(leaf);
3164 6457 : btrfs_release_path(path);
3165 : fail:
3166 6457 : if (ret) {
3167 0 : btrfs_abort_transaction(trans, root, ret);
3168 0 : return ret;
3169 : }
3170 : return 0;
3171 :
3172 : }
3173 :
3174 : static struct btrfs_block_group_cache *
3175 254724 : next_block_group(struct btrfs_root *root,
3176 : struct btrfs_block_group_cache *cache)
3177 : {
3178 : struct rb_node *node;
3179 254724 : spin_lock(&root->fs_info->block_group_cache_lock);
3180 254724 : node = rb_next(&cache->cache_node);
3181 254724 : btrfs_put_block_group(cache);
3182 254724 : if (node) {
3183 220280 : cache = rb_entry(node, struct btrfs_block_group_cache,
3184 : cache_node);
3185 : btrfs_get_block_group(cache);
3186 : } else
3187 : cache = NULL;
3188 254724 : spin_unlock(&root->fs_info->block_group_cache_lock);
3189 254724 : return cache;
3190 : }
3191 :
3192 5895 : static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3193 : struct btrfs_trans_handle *trans,
3194 : struct btrfs_path *path)
3195 : {
3196 5895 : struct btrfs_root *root = block_group->fs_info->tree_root;
3197 4088 : struct inode *inode = NULL;
3198 5895 : u64 alloc_hint = 0;
3199 : int dcs = BTRFS_DC_ERROR;
3200 : int num_pages = 0;
3201 : int retries = 0;
3202 : int ret = 0;
3203 :
3204 : /*
3205 : * If this block group is smaller than 100 megs don't bother caching the
3206 : * block group.
3207 : */
3208 5895 : if (block_group->key.offset < (100 * 1024 * 1024)) {
3209 : spin_lock(&block_group->lock);
3210 1807 : block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3211 : spin_unlock(&block_group->lock);
3212 1807 : return 0;
3213 : }
3214 :
3215 : again:
3216 4267 : inode = lookup_free_space_inode(root, block_group, path);
3217 4446 : if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3218 0 : ret = PTR_ERR(inode);
3219 0 : btrfs_release_path(path);
3220 0 : goto out;
3221 : }
3222 :
3223 4267 : if (IS_ERR(inode)) {
3224 179 : BUG_ON(retries);
3225 179 : retries++;
3226 :
3227 179 : if (block_group->ro)
3228 : goto out_free;
3229 :
3230 179 : ret = create_free_space_inode(root, trans, block_group, path);
3231 179 : if (ret)
3232 : goto out_free;
3233 : goto again;
3234 : }
3235 :
3236 : /* We've already setup this transaction, go ahead and exit */
3237 4170 : if (block_group->cache_generation == trans->transid &&
3238 : i_size_read(inode)) {
3239 : dcs = BTRFS_DC_SETUP;
3240 : goto out_put;
3241 : }
3242 :
3243 : /*
3244 : * We want to set the generation to 0, that way if anything goes wrong
3245 : * from here on out we know not to trust this cache when we load up next
3246 : * time.
3247 : */
3248 4006 : BTRFS_I(inode)->generation = 0;
3249 4006 : ret = btrfs_update_inode(trans, root, inode);
3250 4006 : WARN_ON(ret);
3251 :
3252 4006 : if (i_size_read(inode) > 0) {
3253 3760 : ret = btrfs_check_trunc_cache_free_space(root,
3254 3760 : &root->fs_info->global_block_rsv);
3255 3760 : if (ret)
3256 : goto out_put;
3257 :
3258 3760 : ret = btrfs_truncate_free_space_cache(root, trans, inode);
3259 3760 : if (ret)
3260 : goto out_put;
3261 : }
3262 :
3263 : spin_lock(&block_group->lock);
3264 8005 : if (block_group->cached != BTRFS_CACHE_FINISHED ||
3265 7998 : !btrfs_test_opt(root, SPACE_CACHE) ||
3266 3999 : block_group->delalloc_bytes) {
3267 : /*
3268 : * don't bother trying to write stuff out _if_
3269 : * a) we're not cached,
3270 : * b) we're with nospace_cache mount option.
3271 : */
3272 : dcs = BTRFS_DC_WRITTEN;
3273 : spin_unlock(&block_group->lock);
3274 : goto out_put;
3275 : }
3276 : spin_unlock(&block_group->lock);
3277 :
3278 : /*
3279 : * Try to preallocate enough space based on how big the block group is.
3280 : * Keep in mind this has to include any pinned space which could end up
3281 : * taking up quite a bit since it's not folded into the other space
3282 : * cache.
3283 : */
3284 7950 : num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3285 3975 : if (!num_pages)
3286 : num_pages = 1;
3287 :
3288 3975 : num_pages *= 16;
3289 3975 : num_pages *= PAGE_CACHE_SIZE;
3290 :
3291 3975 : ret = btrfs_check_data_free_space(inode, num_pages);
3292 3975 : if (ret)
3293 : goto out_put;
3294 :
3295 3975 : ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3296 : num_pages, num_pages,
3297 : &alloc_hint);
3298 3975 : if (!ret)
3299 : dcs = BTRFS_DC_SETUP;
3300 3975 : btrfs_free_reserved_data_space(inode, num_pages);
3301 :
3302 : out_put:
3303 4088 : iput(inode);
3304 : out_free:
3305 4088 : btrfs_release_path(path);
3306 : out:
3307 : spin_lock(&block_group->lock);
3308 4088 : if (!ret && dcs == BTRFS_DC_SETUP)
3309 4057 : block_group->cache_generation = trans->transid;
3310 4088 : block_group->disk_cache_state = dcs;
3311 : spin_unlock(&block_group->lock);
3312 :
3313 4088 : return ret;
3314 : }
3315 :
3316 9663 : int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3317 : struct btrfs_root *root)
3318 : {
3319 : struct btrfs_block_group_cache *cache;
3320 : int err = 0;
3321 : struct btrfs_path *path;
3322 : u64 last = 0;
3323 :
3324 9663 : path = btrfs_alloc_path();
3325 9663 : if (!path)
3326 : return -ENOMEM;
3327 :
3328 : again:
3329 : while (1) {
3330 20600 : cache = btrfs_lookup_first_block_group(root->fs_info, last);
3331 131656 : while (cache) {
3332 96351 : if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3333 : break;
3334 90456 : cache = next_block_group(root, cache);
3335 : }
3336 20600 : if (!cache) {
3337 14705 : if (last == 0)
3338 : break;
3339 : last = 0;
3340 3570 : continue;
3341 : }
3342 5895 : err = cache_save_setup(cache, trans, path);
3343 5895 : last = cache->key.objectid + cache->key.offset;
3344 5895 : btrfs_put_block_group(cache);
3345 : }
3346 :
3347 : while (1) {
3348 20434 : if (last == 0) {
3349 13977 : err = btrfs_run_delayed_refs(trans, root,
3350 : (unsigned long)-1);
3351 13977 : if (err) /* File system offline */
3352 : goto out;
3353 : }
3354 :
3355 20434 : cache = btrfs_lookup_first_block_group(root->fs_info, last);
3356 126537 : while (cache) {
3357 93588 : if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
3358 1462 : btrfs_put_block_group(cache);
3359 1462 : goto again;
3360 : }
3361 :
3362 92126 : if (cache->dirty)
3363 : break;
3364 85669 : cache = next_block_group(root, cache);
3365 : }
3366 18972 : if (!cache) {
3367 12515 : if (last == 0)
3368 : break;
3369 : last = 0;
3370 2842 : continue;
3371 : }
3372 :
3373 6457 : if (cache->disk_cache_state == BTRFS_DC_SETUP)
3374 4057 : cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3375 6457 : cache->dirty = 0;
3376 6457 : last = cache->key.objectid + cache->key.offset;
3377 :
3378 6457 : err = write_one_cache_group(trans, root, path, cache);
3379 6457 : btrfs_put_block_group(cache);
3380 6457 : if (err) /* File system offline */
3381 : goto out;
3382 : }
3383 :
3384 : while (1) {
3385 : /*
3386 : * I don't think this is needed since we're just marking our
3387 : * preallocated extent as written, but just in case it can't
3388 : * hurt.
3389 : */
3390 15883 : if (last == 0) {
3391 11826 : err = btrfs_run_delayed_refs(trans, root,
3392 : (unsigned long)-1);
3393 11826 : if (err) /* File system offline */
3394 : goto out;
3395 : }
3396 :
3397 15883 : cache = btrfs_lookup_first_block_group(root->fs_info, last);
3398 108462 : while (cache) {
3399 : /*
3400 : * Really this shouldn't happen, but it could if we
3401 : * couldn't write the entire preallocated extent and
3402 : * splitting the extent resulted in a new block.
3403 : */
3404 80763 : if (cache->dirty) {
3405 10 : btrfs_put_block_group(cache);
3406 10 : goto again;
3407 : }
3408 80753 : if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3409 : break;
3410 76696 : cache = next_block_group(root, cache);
3411 : }
3412 15873 : if (!cache) {
3413 11816 : if (last == 0)
3414 : break;
3415 : last = 0;
3416 2153 : continue;
3417 : }
3418 :
3419 4057 : err = btrfs_write_out_cache(root, trans, cache, path);
3420 :
3421 : /*
3422 : * If we didn't have an error then the cache state is still
3423 : * NEED_WRITE, so we can set it to WRITTEN.
3424 : */
3425 4057 : if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3426 4057 : cache->disk_cache_state = BTRFS_DC_WRITTEN;
3427 4057 : last = cache->key.objectid + cache->key.offset;
3428 4057 : btrfs_put_block_group(cache);
3429 : }
3430 : out:
3431 :
3432 9663 : btrfs_free_path(path);
3433 9663 : return err;
3434 : }
3435 :
3436 6754 : int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3437 : {
3438 : struct btrfs_block_group_cache *block_group;
3439 : int readonly = 0;
3440 :
3441 6754 : block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3442 6754 : if (!block_group || block_group->ro)
3443 : readonly = 1;
3444 6754 : if (block_group)
3445 6754 : btrfs_put_block_group(block_group);
3446 6754 : return readonly;
3447 : }
3448 :
3449 657 : static const char *alloc_name(u64 flags)
3450 : {
3451 657 : switch (flags) {
3452 : case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3453 : return "mixed";
3454 : case BTRFS_BLOCK_GROUP_METADATA:
3455 215 : return "metadata";
3456 : case BTRFS_BLOCK_GROUP_DATA:
3457 215 : return "data";
3458 : case BTRFS_BLOCK_GROUP_SYSTEM:
3459 221 : return "system";
3460 : default:
3461 0 : WARN_ON(1);
3462 0 : return "invalid-combination";
3463 : };
3464 : }
3465 :
3466 1885 : static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3467 : u64 total_bytes, u64 bytes_used,
3468 : struct btrfs_space_info **space_info)
3469 : {
3470 : struct btrfs_space_info *found;
3471 : int i;
3472 : int factor;
3473 : int ret;
3474 :
3475 1885 : if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3476 : BTRFS_BLOCK_GROUP_RAID10))
3477 : factor = 2;
3478 : else
3479 : factor = 1;
3480 :
3481 : found = __find_space_info(info, flags);
3482 1885 : if (found) {
3483 : spin_lock(&found->lock);
3484 1228 : found->total_bytes += total_bytes;
3485 1228 : found->disk_total += total_bytes * factor;
3486 1228 : found->bytes_used += bytes_used;
3487 1228 : found->disk_used += bytes_used * factor;
3488 1228 : found->full = 0;
3489 : spin_unlock(&found->lock);
3490 1228 : *space_info = found;
3491 1228 : return 0;
3492 : }
3493 657 : found = kzalloc(sizeof(*found), GFP_NOFS);
3494 657 : if (!found)
3495 : return -ENOMEM;
3496 :
3497 657 : ret = percpu_counter_init(&found->total_bytes_pinned, 0);
3498 657 : if (ret) {
3499 0 : kfree(found);
3500 0 : return ret;
3501 : }
3502 :
3503 4599 : for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3504 4599 : INIT_LIST_HEAD(&found->block_groups[i]);
3505 657 : init_rwsem(&found->groups_sem);
3506 657 : spin_lock_init(&found->lock);
3507 657 : found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3508 657 : found->total_bytes = total_bytes;
3509 657 : found->disk_total = total_bytes * factor;
3510 657 : found->bytes_used = bytes_used;
3511 657 : found->disk_used = bytes_used * factor;
3512 657 : found->bytes_pinned = 0;
3513 657 : found->bytes_reserved = 0;
3514 657 : found->bytes_readonly = 0;
3515 657 : found->bytes_may_use = 0;
3516 657 : found->full = 0;
3517 657 : found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3518 657 : found->chunk_alloc = 0;
3519 657 : found->flush = 0;
3520 657 : init_waitqueue_head(&found->wait);
3521 :
3522 657 : ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3523 : info->space_info_kobj, "%s",
3524 : alloc_name(found->flags));
3525 657 : if (ret) {
3526 0 : kfree(found);
3527 0 : return ret;
3528 : }
3529 :
3530 657 : *space_info = found;
3531 657 : list_add_rcu(&found->list, &info->space_info);
3532 657 : if (flags & BTRFS_BLOCK_GROUP_DATA)
3533 221 : info->data_sinfo = found;
3534 :
3535 657 : return ret;
3536 : }
3537 :
3538 1228 : static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3539 : {
3540 1228 : u64 extra_flags = chunk_to_extended(flags) &
3541 : BTRFS_EXTENDED_PROFILE_MASK;
3542 :
3543 : write_seqlock(&fs_info->profiles_lock);
3544 1228 : if (flags & BTRFS_BLOCK_GROUP_DATA)
3545 325 : fs_info->avail_data_alloc_bits |= extra_flags;
3546 1228 : if (flags & BTRFS_BLOCK_GROUP_METADATA)
3547 466 : fs_info->avail_metadata_alloc_bits |= extra_flags;
3548 1228 : if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3549 453 : fs_info->avail_system_alloc_bits |= extra_flags;
3550 : write_sequnlock(&fs_info->profiles_lock);
3551 1228 : }
3552 :
3553 : /*
3554 : * returns target flags in extended format or 0 if restripe for this
3555 : * chunk_type is not in progress
3556 : *
3557 : * should be called with either volume_mutex or balance_lock held
3558 : */
3559 166920 : static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3560 : {
3561 166920 : struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3562 : u64 target = 0;
3563 :
3564 166920 : if (!bctl)
3565 : return 0;
3566 :
3567 8207 : if (flags & BTRFS_BLOCK_GROUP_DATA &&
3568 1885 : bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3569 0 : target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3570 6501 : } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3571 179 : bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3572 0 : target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3573 10580 : } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3574 4258 : bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3575 0 : target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3576 : }
3577 :
3578 : return target;
3579 : }
3580 :
3581 : /*
3582 : * @flags: available profiles in extended format (see ctree.h)
3583 : *
3584 : * Returns reduced profile in chunk format. If profile changing is in
3585 : * progress (either running or paused) picks the target profile (if it's
3586 : * already available), otherwise falls back to plain reducing.
3587 : */
3588 166789 : static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3589 : {
3590 333583 : u64 num_devices = root->fs_info->fs_devices->rw_devices;
3591 : u64 target;
3592 : u64 tmp;
3593 :
3594 : /*
3595 : * see if restripe for this chunk_type is in progress, if so
3596 : * try to reduce to the target profile
3597 : */
3598 : spin_lock(&root->fs_info->balance_lock);
3599 333588 : target = get_restripe_target(root->fs_info, flags);
3600 166793 : if (target) {
3601 : /* pick target profile only if it's already available */
3602 0 : if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3603 : spin_unlock(&root->fs_info->balance_lock);
3604 : return extended_to_chunk(target);
3605 : }
3606 : }
3607 : spin_unlock(&root->fs_info->balance_lock);
3608 :
3609 : /* First, mask out the RAID levels which aren't possible */
3610 166793 : if (num_devices == 1)
3611 162382 : flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3612 : BTRFS_BLOCK_GROUP_RAID5);
3613 166793 : if (num_devices < 3)
3614 166697 : flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3615 166793 : if (num_devices < 4)
3616 166697 : flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3617 :
3618 166793 : tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3619 : BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3620 : BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3621 166793 : flags &= ~tmp;
3622 :
3623 166793 : if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3624 : tmp = BTRFS_BLOCK_GROUP_RAID6;
3625 166779 : else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3626 : tmp = BTRFS_BLOCK_GROUP_RAID5;
3627 166763 : else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3628 : tmp = BTRFS_BLOCK_GROUP_RAID10;
3629 166749 : else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3630 : tmp = BTRFS_BLOCK_GROUP_RAID1;
3631 163452 : else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3632 : tmp = BTRFS_BLOCK_GROUP_RAID0;
3633 :
3634 166793 : return extended_to_chunk(flags | tmp);
3635 : }
3636 :
3637 166787 : static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
3638 : {
3639 : unsigned seq;
3640 : u64 flags;
3641 :
3642 : do {
3643 : flags = orig_flags;
3644 166786 : seq = read_seqbegin(&root->fs_info->profiles_lock);
3645 :
3646 166787 : if (flags & BTRFS_BLOCK_GROUP_DATA)
3647 102114 : flags |= root->fs_info->avail_data_alloc_bits;
3648 64673 : else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3649 378 : flags |= root->fs_info->avail_system_alloc_bits;
3650 64295 : else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3651 64295 : flags |= root->fs_info->avail_metadata_alloc_bits;
3652 333575 : } while (read_seqretry(&root->fs_info->profiles_lock, seq));
3653 :
3654 166789 : return btrfs_reduce_alloc_profile(root, flags);
3655 : }
3656 :
3657 166086 : u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3658 : {
3659 : u64 flags;
3660 : u64 ret;
3661 :
3662 166086 : if (data)
3663 : flags = BTRFS_BLOCK_GROUP_DATA;
3664 64193 : else if (root == root->fs_info->chunk_root)
3665 : flags = BTRFS_BLOCK_GROUP_SYSTEM;
3666 : else
3667 : flags = BTRFS_BLOCK_GROUP_METADATA;
3668 :
3669 166086 : ret = get_alloc_profile(root, flags);
3670 166090 : return ret;
3671 : }
3672 :
3673 : /*
3674 : * This will check the space that the inode allocates from to make sure we have
3675 : * enough space for bytes.
3676 : */
3677 159345 : int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3678 : {
3679 : struct btrfs_space_info *data_sinfo;
3680 159345 : struct btrfs_root *root = BTRFS_I(inode)->root;
3681 159345 : struct btrfs_fs_info *fs_info = root->fs_info;
3682 : u64 used;
3683 : int ret = 0, committed = 0, alloc_chunk = 1;
3684 :
3685 : /* make sure bytes are sectorsize aligned */
3686 159345 : bytes = ALIGN(bytes, root->sectorsize);
3687 :
3688 159345 : if (btrfs_is_free_space_inode(inode)) {
3689 : committed = 1;
3690 : ASSERT(current->journal_info);
3691 : }
3692 :
3693 159347 : data_sinfo = fs_info->data_sinfo;
3694 159347 : if (!data_sinfo)
3695 : goto alloc;
3696 :
3697 : again:
3698 : /* make sure we have enough space to handle the data first */
3699 : spin_lock(&data_sinfo->lock);
3700 478191 : used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3701 318794 : data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3702 159397 : data_sinfo->bytes_may_use;
3703 :
3704 159397 : if (used + bytes > data_sinfo->total_bytes) {
3705 : struct btrfs_trans_handle *trans;
3706 :
3707 : /*
3708 : * if we don't have enough free bytes in this space then we need
3709 : * to alloc a new chunk.
3710 : */
3711 39 : if (!data_sinfo->full && alloc_chunk) {
3712 : u64 alloc_target;
3713 :
3714 39 : data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3715 : spin_unlock(&data_sinfo->lock);
3716 : alloc:
3717 37 : alloc_target = btrfs_get_alloc_profile(root, 1);
3718 : /*
3719 : * It is ugly that we don't call nolock join
3720 : * transaction for the free space inode case here.
3721 : * But it is safe because we only do the data space
3722 : * reservation for the free space cache in the
3723 : * transaction context, the common join transaction
3724 : * just increase the counter of the current transaction
3725 : * handler, doesn't try to acquire the trans_lock of
3726 : * the fs.
3727 : */
3728 39 : trans = btrfs_join_transaction(root);
3729 39 : if (IS_ERR(trans))
3730 0 : return PTR_ERR(trans);
3731 :
3732 39 : ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3733 : alloc_target,
3734 : CHUNK_ALLOC_NO_FORCE);
3735 39 : btrfs_end_transaction(trans, root);
3736 39 : if (ret < 0) {
3737 0 : if (ret != -ENOSPC)
3738 : return ret;
3739 : else
3740 : goto commit_trans;
3741 : }
3742 :
3743 39 : if (!data_sinfo)
3744 0 : data_sinfo = fs_info->data_sinfo;
3745 :
3746 : goto again;
3747 : }
3748 :
3749 : /*
3750 : * If we don't have enough pinned space to deal with this
3751 : * allocation don't bother committing the transaction.
3752 : */
3753 0 : if (percpu_counter_compare(&data_sinfo->total_bytes_pinned,
3754 : bytes) < 0)
3755 : committed = 1;
3756 : spin_unlock(&data_sinfo->lock);
3757 :
3758 : /* commit the current transaction and try again */
3759 : commit_trans:
3760 0 : if (!committed &&
3761 0 : !atomic_read(&root->fs_info->open_ioctl_trans)) {
3762 : committed = 1;
3763 :
3764 0 : trans = btrfs_join_transaction(root);
3765 0 : if (IS_ERR(trans))
3766 0 : return PTR_ERR(trans);
3767 0 : ret = btrfs_commit_transaction(trans, root);
3768 0 : if (ret)
3769 : return ret;
3770 : goto again;
3771 : }
3772 :
3773 0 : trace_btrfs_space_reservation(root->fs_info,
3774 : "space_info:enospc",
3775 : data_sinfo->flags, bytes, 1);
3776 0 : return -ENOSPC;
3777 : }
3778 159358 : data_sinfo->bytes_may_use += bytes;
3779 159358 : trace_btrfs_space_reservation(root->fs_info, "space_info",
3780 : data_sinfo->flags, bytes, 1);
3781 : spin_unlock(&data_sinfo->lock);
3782 :
3783 159358 : return 0;
3784 : }
3785 :
3786 : /*
3787 : * Called if we need to clear a data reservation for this inode.
3788 : */
3789 90628 : void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3790 : {
3791 90628 : struct btrfs_root *root = BTRFS_I(inode)->root;
3792 : struct btrfs_space_info *data_sinfo;
3793 :
3794 : /* make sure bytes are sectorsize aligned */
3795 90628 : bytes = ALIGN(bytes, root->sectorsize);
3796 :
3797 90628 : data_sinfo = root->fs_info->data_sinfo;
3798 : spin_lock(&data_sinfo->lock);
3799 90642 : WARN_ON(data_sinfo->bytes_may_use < bytes);
3800 90642 : data_sinfo->bytes_may_use -= bytes;
3801 90642 : trace_btrfs_space_reservation(root->fs_info, "space_info",
3802 : data_sinfo->flags, bytes, 0);
3803 : spin_unlock(&data_sinfo->lock);
3804 90642 : }
3805 :
3806 : static void force_metadata_allocation(struct btrfs_fs_info *info)
3807 : {
3808 : struct list_head *head = &info->space_info;
3809 : struct btrfs_space_info *found;
3810 :
3811 : rcu_read_lock();
3812 0 : list_for_each_entry_rcu(found, head, list) {
3813 0 : if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3814 0 : found->force_alloc = CHUNK_ALLOC_FORCE;
3815 : }
3816 : rcu_read_unlock();
3817 : }
3818 :
3819 : static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
3820 : {
3821 5307 : return (global->size << 1);
3822 : }
3823 :
3824 87 : static int should_alloc_chunk(struct btrfs_root *root,
3825 : struct btrfs_space_info *sinfo, int force)
3826 : {
3827 90 : struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3828 87 : u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3829 87 : u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3830 : u64 thresh;
3831 :
3832 87 : if (force == CHUNK_ALLOC_FORCE)
3833 : return 1;
3834 :
3835 : /*
3836 : * We need to take into account the global rsv because for all intents
3837 : * and purposes it's used space. Don't worry about locking the
3838 : * global_rsv, it doesn't change except when the transaction commits.
3839 : */
3840 3 : if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3841 3 : num_allocated += calc_global_rsv_need_space(global_rsv);
3842 :
3843 : /*
3844 : * in limited mode, we want to have some free space up to
3845 : * about 1% of the FS size.
3846 : */
3847 3 : if (force == CHUNK_ALLOC_LIMITED) {
3848 0 : thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3849 0 : thresh = max_t(u64, 64 * 1024 * 1024,
3850 : div_factor_fine(thresh, 1));
3851 :
3852 0 : if (num_bytes - num_allocated < thresh)
3853 : return 1;
3854 : }
3855 :
3856 6 : if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3857 : return 0;
3858 : return 1;
3859 : }
3860 :
3861 87 : static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3862 : {
3863 : u64 num_dev;
3864 :
3865 87 : if (type & (BTRFS_BLOCK_GROUP_RAID10 |
3866 : BTRFS_BLOCK_GROUP_RAID0 |
3867 : BTRFS_BLOCK_GROUP_RAID5 |
3868 : BTRFS_BLOCK_GROUP_RAID6))
3869 0 : num_dev = root->fs_info->fs_devices->rw_devices;
3870 87 : else if (type & BTRFS_BLOCK_GROUP_RAID1)
3871 : num_dev = 2;
3872 : else
3873 : num_dev = 1; /* DUP or single */
3874 :
3875 : /* metadata for updaing devices and chunk tree */
3876 87 : return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3877 : }
3878 :
3879 87 : static void check_system_chunk(struct btrfs_trans_handle *trans,
3880 : struct btrfs_root *root, u64 type)
3881 : {
3882 : struct btrfs_space_info *info;
3883 : u64 left;
3884 : u64 thresh;
3885 :
3886 87 : info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3887 : spin_lock(&info->lock);
3888 261 : left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3889 174 : info->bytes_reserved - info->bytes_readonly;
3890 : spin_unlock(&info->lock);
3891 :
3892 : thresh = get_system_chunk_thresh(root, type);
3893 87 : if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3894 0 : btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
3895 : left, thresh, type);
3896 0 : dump_space_info(info, 0, 0);
3897 : }
3898 :
3899 87 : if (left < thresh) {
3900 : u64 flags;
3901 :
3902 0 : flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3903 0 : btrfs_alloc_chunk(trans, root, flags);
3904 : }
3905 87 : }
3906 :
3907 87 : static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3908 87 : struct btrfs_root *extent_root, u64 flags, int force)
3909 : {
3910 : struct btrfs_space_info *space_info;
3911 87 : struct btrfs_fs_info *fs_info = extent_root->fs_info;
3912 : int wait_for_alloc = 0;
3913 : int ret = 0;
3914 :
3915 : /* Don't re-enter if we're already allocating a chunk */
3916 87 : if (trans->allocating_chunk)
3917 : return -ENOSPC;
3918 :
3919 87 : space_info = __find_space_info(extent_root->fs_info, flags);
3920 87 : if (!space_info) {
3921 0 : ret = update_space_info(extent_root->fs_info, flags,
3922 : 0, 0, &space_info);
3923 0 : BUG_ON(ret); /* -ENOMEM */
3924 : }
3925 87 : BUG_ON(!space_info); /* Logic error */
3926 :
3927 : again:
3928 87 : spin_lock(&space_info->lock);
3929 87 : if (force < space_info->force_alloc)
3930 39 : force = space_info->force_alloc;
3931 87 : if (space_info->full) {
3932 0 : if (should_alloc_chunk(extent_root, space_info, force))
3933 : ret = -ENOSPC;
3934 : else
3935 : ret = 0;
3936 : spin_unlock(&space_info->lock);
3937 0 : return ret;
3938 : }
3939 :
3940 87 : if (!should_alloc_chunk(extent_root, space_info, force)) {
3941 : spin_unlock(&space_info->lock);
3942 0 : return 0;
3943 87 : } else if (space_info->chunk_alloc) {
3944 : wait_for_alloc = 1;
3945 : } else {
3946 87 : space_info->chunk_alloc = 1;
3947 : }
3948 :
3949 : spin_unlock(&space_info->lock);
3950 :
3951 87 : mutex_lock(&fs_info->chunk_mutex);
3952 :
3953 : /*
3954 : * The chunk_mutex is held throughout the entirety of a chunk
3955 : * allocation, so once we've acquired the chunk_mutex we know that the
3956 : * other guy is done and we need to recheck and see if we should
3957 : * allocate.
3958 : */
3959 87 : if (wait_for_alloc) {
3960 0 : mutex_unlock(&fs_info->chunk_mutex);
3961 : wait_for_alloc = 0;
3962 0 : goto again;
3963 : }
3964 :
3965 87 : trans->allocating_chunk = true;
3966 :
3967 : /*
3968 : * If we have mixed data/metadata chunks we want to make sure we keep
3969 : * allocating mixed chunks instead of individual chunks.
3970 : */
3971 174 : if (btrfs_mixed_space_info(space_info))
3972 4 : flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3973 :
3974 : /*
3975 : * if we're doing a data chunk, go ahead and make sure that
3976 : * we keep a reasonable number of metadata chunks allocated in the
3977 : * FS as well.
3978 : */
3979 87 : if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3980 0 : fs_info->data_chunk_allocations++;
3981 0 : if (!(fs_info->data_chunk_allocations %
3982 : fs_info->metadata_ratio))
3983 : force_metadata_allocation(fs_info);
3984 : }
3985 :
3986 : /*
3987 : * Check if we have enough space in SYSTEM chunk because we may need
3988 : * to update devices.
3989 : */
3990 87 : check_system_chunk(trans, extent_root, flags);
3991 :
3992 87 : ret = btrfs_alloc_chunk(trans, extent_root, flags);
3993 87 : trans->allocating_chunk = false;
3994 :
3995 87 : spin_lock(&space_info->lock);
3996 87 : if (ret < 0 && ret != -ENOSPC)
3997 : goto out;
3998 87 : if (ret)
3999 0 : space_info->full = 1;
4000 : else
4001 : ret = 1;
4002 :
4003 87 : space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4004 : out:
4005 87 : space_info->chunk_alloc = 0;
4006 : spin_unlock(&space_info->lock);
4007 87 : mutex_unlock(&fs_info->chunk_mutex);
4008 87 : return ret;
4009 : }
4010 :
4011 5304 : static int can_overcommit(struct btrfs_root *root,
4012 : struct btrfs_space_info *space_info, u64 bytes,
4013 : enum btrfs_reserve_flush_enum flush)
4014 : {
4015 10608 : struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4016 5304 : u64 profile = btrfs_get_alloc_profile(root, 0);
4017 : u64 space_size;
4018 : u64 avail;
4019 : u64 used;
4020 :
4021 15912 : used = space_info->bytes_used + space_info->bytes_reserved +
4022 10608 : space_info->bytes_pinned + space_info->bytes_readonly;
4023 :
4024 : /*
4025 : * We only want to allow over committing if we have lots of actual space
4026 : * free, but if we don't have enough space to handle the global reserve
4027 : * space then we could end up having a real enospc problem when trying
4028 : * to allocate a chunk or some other such important allocation.
4029 : */
4030 : spin_lock(&global_rsv->lock);
4031 : space_size = calc_global_rsv_need_space(global_rsv);
4032 : spin_unlock(&global_rsv->lock);
4033 5304 : if (used + space_size >= space_info->total_bytes)
4034 : return 0;
4035 :
4036 4916 : used += space_info->bytes_may_use;
4037 :
4038 4916 : spin_lock(&root->fs_info->free_chunk_lock);
4039 4916 : avail = root->fs_info->free_chunk_space;
4040 : spin_unlock(&root->fs_info->free_chunk_lock);
4041 :
4042 : /*
4043 : * If we have dup, raid1 or raid10 then only half of the free
4044 : * space is actually useable. For raid56, the space info used
4045 : * doesn't include the parity drive, so we don't have to
4046 : * change the math
4047 : */
4048 4916 : if (profile & (BTRFS_BLOCK_GROUP_DUP |
4049 : BTRFS_BLOCK_GROUP_RAID1 |
4050 : BTRFS_BLOCK_GROUP_RAID10))
4051 1543 : avail >>= 1;
4052 :
4053 : /*
4054 : * If we aren't flushing all things, let us overcommit up to
4055 : * 1/2th of the space. If we can flush, don't let us overcommit
4056 : * too much, let it overcommit up to 1/8 of the space.
4057 : */
4058 4916 : if (flush == BTRFS_RESERVE_FLUSH_ALL)
4059 4916 : avail >>= 3;
4060 : else
4061 0 : avail >>= 1;
4062 :
4063 4916 : if (used + bytes < space_info->total_bytes + avail)
4064 : return 1;
4065 0 : return 0;
4066 : }
4067 :
4068 50 : static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4069 : unsigned long nr_pages, int nr_items)
4070 : {
4071 50 : struct super_block *sb = root->fs_info->sb;
4072 :
4073 50 : if (down_read_trylock(&sb->s_umount)) {
4074 50 : writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4075 50 : up_read(&sb->s_umount);
4076 : } else {
4077 : /*
4078 : * We needn't worry the filesystem going from r/w to r/o though
4079 : * we don't acquire ->s_umount mutex, because the filesystem
4080 : * should guarantee the delalloc inodes list be empty after
4081 : * the filesystem is readonly(all dirty pages are written to
4082 : * the disk).
4083 : */
4084 0 : btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4085 0 : if (!current->journal_info)
4086 0 : btrfs_wait_ordered_roots(root->fs_info, nr_items);
4087 : }
4088 50 : }
4089 :
4090 232 : static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4091 : {
4092 : u64 bytes;
4093 : int nr;
4094 :
4095 : bytes = btrfs_calc_trans_metadata_size(root, 1);
4096 232 : nr = (int)div64_u64(to_reclaim, bytes);
4097 232 : if (!nr)
4098 : nr = 1;
4099 : return nr;
4100 : }
4101 :
4102 : #define EXTENT_SIZE_PER_ITEM (256 * 1024)
4103 :
4104 : /*
4105 : * shrink metadata reservation for delalloc
4106 : */
4107 54 : static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4108 : bool wait_ordered)
4109 : {
4110 : struct btrfs_block_rsv *block_rsv;
4111 : struct btrfs_space_info *space_info;
4112 : struct btrfs_trans_handle *trans;
4113 : u64 delalloc_bytes;
4114 : u64 max_reclaim;
4115 : long time_left;
4116 : unsigned long nr_pages;
4117 : int loops;
4118 : int items;
4119 : enum btrfs_reserve_flush_enum flush;
4120 :
4121 : /* Calc the number of the pages we need flush for space reservation */
4122 : items = calc_reclaim_items_nr(root, to_reclaim);
4123 54 : to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4124 :
4125 54 : trans = (struct btrfs_trans_handle *)current->journal_info;
4126 54 : block_rsv = &root->fs_info->delalloc_block_rsv;
4127 54 : space_info = block_rsv->space_info;
4128 :
4129 108 : delalloc_bytes = percpu_counter_sum_positive(
4130 : &root->fs_info->delalloc_bytes);
4131 54 : if (delalloc_bytes == 0) {
4132 8 : if (trans)
4133 : return;
4134 8 : if (wait_ordered)
4135 5 : btrfs_wait_ordered_roots(root->fs_info, items);
4136 : return;
4137 : }
4138 :
4139 : loops = 0;
4140 96 : while (delalloc_bytes && loops < 3) {
4141 50 : max_reclaim = min(delalloc_bytes, to_reclaim);
4142 50 : nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4143 50 : btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4144 : /*
4145 : * We need to wait for the async pages to actually start before
4146 : * we do anything.
4147 : */
4148 100 : max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4149 50 : if (!max_reclaim)
4150 : goto skip_async;
4151 :
4152 0 : if (max_reclaim <= nr_pages)
4153 : max_reclaim = 0;
4154 : else
4155 0 : max_reclaim -= nr_pages;
4156 :
4157 0 : wait_event(root->fs_info->async_submit_wait,
4158 : atomic_read(&root->fs_info->async_delalloc_pages) <=
4159 : (int)max_reclaim);
4160 : skip_async:
4161 50 : if (!trans)
4162 : flush = BTRFS_RESERVE_FLUSH_ALL;
4163 : else
4164 : flush = BTRFS_RESERVE_NO_FLUSH;
4165 : spin_lock(&space_info->lock);
4166 50 : if (can_overcommit(root, space_info, orig, flush)) {
4167 : spin_unlock(&space_info->lock);
4168 : break;
4169 : }
4170 : spin_unlock(&space_info->lock);
4171 :
4172 50 : loops++;
4173 50 : if (wait_ordered && !trans) {
4174 0 : btrfs_wait_ordered_roots(root->fs_info, items);
4175 : } else {
4176 50 : time_left = schedule_timeout_killable(1);
4177 50 : if (time_left)
4178 : break;
4179 : }
4180 100 : delalloc_bytes = percpu_counter_sum_positive(
4181 50 : &root->fs_info->delalloc_bytes);
4182 : }
4183 : }
4184 :
4185 : /**
4186 : * maybe_commit_transaction - possibly commit the transaction if its ok to
4187 : * @root - the root we're allocating for
4188 : * @bytes - the number of bytes we want to reserve
4189 : * @force - force the commit
4190 : *
4191 : * This will check to make sure that committing the transaction will actually
4192 : * get us somewhere and then commit the transaction if it does. Otherwise it
4193 : * will return -ENOSPC.
4194 : */
4195 0 : static int may_commit_transaction(struct btrfs_root *root,
4196 : struct btrfs_space_info *space_info,
4197 : u64 bytes, int force)
4198 : {
4199 0 : struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4200 : struct btrfs_trans_handle *trans;
4201 :
4202 0 : trans = (struct btrfs_trans_handle *)current->journal_info;
4203 0 : if (trans)
4204 : return -EAGAIN;
4205 :
4206 0 : if (force)
4207 : goto commit;
4208 :
4209 : /* See if there is enough pinned space to make this reservation */
4210 0 : if (percpu_counter_compare(&space_info->total_bytes_pinned,
4211 : bytes) >= 0)
4212 : goto commit;
4213 :
4214 : /*
4215 : * See if there is some space in the delayed insertion reservation for
4216 : * this reservation.
4217 : */
4218 0 : if (space_info != delayed_rsv->space_info)
4219 : return -ENOSPC;
4220 :
4221 : spin_lock(&delayed_rsv->lock);
4222 0 : if (percpu_counter_compare(&space_info->total_bytes_pinned,
4223 0 : bytes - delayed_rsv->size) >= 0) {
4224 : spin_unlock(&delayed_rsv->lock);
4225 0 : return -ENOSPC;
4226 : }
4227 : spin_unlock(&delayed_rsv->lock);
4228 :
4229 : commit:
4230 0 : trans = btrfs_join_transaction(root);
4231 0 : if (IS_ERR(trans))
4232 : return -ENOSPC;
4233 :
4234 0 : return btrfs_commit_transaction(trans, root);
4235 : }
4236 :
4237 : enum flush_state {
4238 : FLUSH_DELAYED_ITEMS_NR = 1,
4239 : FLUSH_DELAYED_ITEMS = 2,
4240 : FLUSH_DELALLOC = 3,
4241 : FLUSH_DELALLOC_WAIT = 4,
4242 : ALLOC_CHUNK = 5,
4243 : COMMIT_TRANS = 6,
4244 : };
4245 :
4246 284 : static int flush_space(struct btrfs_root *root,
4247 : struct btrfs_space_info *space_info, u64 num_bytes,
4248 : u64 orig_bytes, int state)
4249 : {
4250 : struct btrfs_trans_handle *trans;
4251 : int nr;
4252 : int ret = 0;
4253 :
4254 284 : switch (state) {
4255 : case FLUSH_DELAYED_ITEMS_NR:
4256 : case FLUSH_DELAYED_ITEMS:
4257 227 : if (state == FLUSH_DELAYED_ITEMS_NR)
4258 178 : nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4259 : else
4260 : nr = -1;
4261 :
4262 227 : trans = btrfs_join_transaction(root);
4263 227 : if (IS_ERR(trans)) {
4264 0 : ret = PTR_ERR(trans);
4265 0 : break;
4266 : }
4267 227 : ret = btrfs_run_delayed_items_nr(trans, root, nr);
4268 227 : btrfs_end_transaction(trans, root);
4269 227 : break;
4270 : case FLUSH_DELALLOC:
4271 : case FLUSH_DELALLOC_WAIT:
4272 54 : shrink_delalloc(root, num_bytes * 2, orig_bytes,
4273 : state == FLUSH_DELALLOC_WAIT);
4274 54 : break;
4275 : case ALLOC_CHUNK:
4276 3 : trans = btrfs_join_transaction(root);
4277 3 : if (IS_ERR(trans)) {
4278 0 : ret = PTR_ERR(trans);
4279 0 : break;
4280 : }
4281 3 : ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4282 : btrfs_get_alloc_profile(root, 0),
4283 : CHUNK_ALLOC_NO_FORCE);
4284 3 : btrfs_end_transaction(trans, root);
4285 3 : if (ret == -ENOSPC)
4286 : ret = 0;
4287 : break;
4288 : case COMMIT_TRANS:
4289 0 : ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4290 0 : break;
4291 : default:
4292 : ret = -ENOSPC;
4293 : break;
4294 : }
4295 :
4296 284 : return ret;
4297 : }
4298 :
4299 : static inline u64
4300 2332 : btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4301 : struct btrfs_space_info *space_info)
4302 : {
4303 : u64 used;
4304 : u64 expected;
4305 : u64 to_reclaim;
4306 :
4307 4664 : to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4308 : 16 * 1024 * 1024);
4309 : spin_lock(&space_info->lock);
4310 2332 : if (can_overcommit(root, space_info, to_reclaim,
4311 : BTRFS_RESERVE_FLUSH_ALL)) {
4312 : to_reclaim = 0;
4313 : goto out;
4314 : }
4315 :
4316 306 : used = space_info->bytes_used + space_info->bytes_reserved +
4317 204 : space_info->bytes_pinned + space_info->bytes_readonly +
4318 102 : space_info->bytes_may_use;
4319 102 : if (can_overcommit(root, space_info, 1024 * 1024,
4320 : BTRFS_RESERVE_FLUSH_ALL))
4321 0 : expected = div_factor_fine(space_info->total_bytes, 95);
4322 : else
4323 102 : expected = div_factor_fine(space_info->total_bytes, 90);
4324 :
4325 102 : if (used > expected)
4326 102 : to_reclaim = used - expected;
4327 : else
4328 : to_reclaim = 0;
4329 102 : to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4330 : space_info->bytes_reserved);
4331 : out:
4332 : spin_unlock(&space_info->lock);
4333 :
4334 2332 : return to_reclaim;
4335 : }
4336 :
4337 : static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4338 : struct btrfs_fs_info *fs_info, u64 used)
4339 : {
4340 3152 : return (used >= div_factor_fine(space_info->total_bytes, 98) &&
4341 225853 : !btrfs_fs_closing(fs_info) &&
4342 : !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4343 : }
4344 :
4345 300 : static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4346 : struct btrfs_fs_info *fs_info)
4347 : {
4348 : u64 used;
4349 :
4350 : spin_lock(&space_info->lock);
4351 450 : used = space_info->bytes_used + space_info->bytes_reserved +
4352 300 : space_info->bytes_pinned + space_info->bytes_readonly +
4353 150 : space_info->bytes_may_use;
4354 150 : if (need_do_async_reclaim(space_info, fs_info, used)) {
4355 : spin_unlock(&space_info->lock);
4356 48 : return 1;
4357 : }
4358 : spin_unlock(&space_info->lock);
4359 :
4360 102 : return 0;
4361 : }
4362 :
4363 2332 : static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4364 : {
4365 : struct btrfs_fs_info *fs_info;
4366 : struct btrfs_space_info *space_info;
4367 : u64 to_reclaim;
4368 : int flush_state;
4369 :
4370 2332 : fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4371 : space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4372 :
4373 2332 : to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4374 : space_info);
4375 2332 : if (!to_reclaim)
4376 : return;
4377 :
4378 : flush_state = FLUSH_DELAYED_ITEMS_NR;
4379 : do {
4380 150 : flush_space(fs_info->fs_root, space_info, to_reclaim,
4381 : to_reclaim, flush_state);
4382 150 : flush_state++;
4383 150 : if (!btrfs_need_do_async_reclaim(space_info, fs_info))
4384 : return;
4385 48 : } while (flush_state <= COMMIT_TRANS);
4386 :
4387 0 : if (btrfs_need_do_async_reclaim(space_info, fs_info))
4388 0 : queue_work(system_unbound_wq, work);
4389 : }
4390 :
4391 221 : void btrfs_init_async_reclaim_work(struct work_struct *work)
4392 : {
4393 442 : INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4394 221 : }
4395 :
4396 : /**
4397 : * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4398 : * @root - the root we're allocating for
4399 : * @block_rsv - the block_rsv we're allocating for
4400 : * @orig_bytes - the number of bytes we want
4401 : * @flush - whether or not we can flush to make our reservation
4402 : *
4403 : * This will reserve orgi_bytes number of bytes from the space info associated
4404 : * with the block_rsv. If there is not enough space it will make an attempt to
4405 : * flush out space to make room. It will do this by flushing delalloc if
4406 : * possible or committing the transaction. If flush is 0 then no attempts to
4407 : * regain reservations will be made and this will fail if there is not enough
4408 : * space already.
4409 : */
4410 222682 : static int reserve_metadata_bytes(struct btrfs_root *root,
4411 : struct btrfs_block_rsv *block_rsv,
4412 : u64 orig_bytes,
4413 : enum btrfs_reserve_flush_enum flush)
4414 : {
4415 445233 : struct btrfs_space_info *space_info = block_rsv->space_info;
4416 : u64 used;
4417 : u64 num_bytes = orig_bytes;
4418 : int flush_state = FLUSH_DELAYED_ITEMS_NR;
4419 : int ret = 0;
4420 : bool flushing = false;
4421 :
4422 : again:
4423 : ret = 0;
4424 : spin_lock(&space_info->lock);
4425 : /*
4426 : * We only want to wait if somebody other than us is flushing and we
4427 : * are actually allowed to flush all things.
4428 : */
4429 222823 : while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4430 : space_info->flush) {
4431 : spin_unlock(&space_info->lock);
4432 : /*
4433 : * If we have a trans handle we can't wait because the flusher
4434 : * may have to commit the transaction, which would mean we would
4435 : * deadlock since we are waiting for the flusher to finish, but
4436 : * hold the current transaction open.
4437 : */
4438 2 : if (current->journal_info)
4439 : return -EAGAIN;
4440 4 : ret = wait_event_killable(space_info->wait, !space_info->flush);
4441 : /* Must have been killed, return */
4442 2 : if (ret)
4443 : return -EINTR;
4444 :
4445 : spin_lock(&space_info->lock);
4446 : }
4447 :
4448 : ret = -ENOSPC;
4449 668463 : used = space_info->bytes_used + space_info->bytes_reserved +
4450 445642 : space_info->bytes_pinned + space_info->bytes_readonly +
4451 222821 : space_info->bytes_may_use;
4452 :
4453 : /*
4454 : * The idea here is that we've not already over-reserved the block group
4455 : * then we can go ahead and save our reservation first and then start
4456 : * flushing if we need to. Otherwise if we've already overcommitted
4457 : * lets start flushing stuff first and then come back and try to make
4458 : * our reservation.
4459 : */
4460 222821 : if (used <= space_info->total_bytes) {
4461 220143 : if (used + orig_bytes <= space_info->total_bytes) {
4462 220001 : space_info->bytes_may_use += orig_bytes;
4463 220001 : trace_btrfs_space_reservation(root->fs_info,
4464 : "space_info", space_info->flags, orig_bytes, 1);
4465 : ret = 0;
4466 : } else {
4467 : /*
4468 : * Ok set num_bytes to orig_bytes since we aren't
4469 : * overocmmitted, this way we only try and reclaim what
4470 : * we need.
4471 : */
4472 : num_bytes = orig_bytes;
4473 : }
4474 : } else {
4475 : /*
4476 : * Ok we're over committed, set num_bytes to the overcommitted
4477 : * amount plus the amount of bytes that we need for this
4478 : * reservation.
4479 : */
4480 5356 : num_bytes = used - space_info->total_bytes +
4481 2678 : (orig_bytes * 2);
4482 : }
4483 :
4484 222820 : if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4485 2686 : space_info->bytes_may_use += orig_bytes;
4486 2686 : trace_btrfs_space_reservation(root->fs_info, "space_info",
4487 : space_info->flags, orig_bytes,
4488 : 1);
4489 : ret = 0;
4490 : }
4491 :
4492 : /*
4493 : * Couldn't make our reservation, save our place so while we're trying
4494 : * to reclaim space we can actually use it instead of somebody else
4495 : * stealing it from us.
4496 : *
4497 : * We make the other tasks wait for the flush only when we can flush
4498 : * all things.
4499 : */
4500 222820 : if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4501 : flushing = true;
4502 134 : space_info->flush = 1;
4503 222686 : } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4504 222551 : used += orig_bytes;
4505 448206 : if (need_do_async_reclaim(space_info, root->fs_info, used) &&
4506 3104 : !work_busy(&root->fs_info->async_reclaim_work))
4507 2332 : queue_work(system_unbound_wq,
4508 2332 : &root->fs_info->async_reclaim_work);
4509 : }
4510 : spin_unlock(&space_info->lock);
4511 :
4512 222820 : if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4513 : goto out;
4514 :
4515 134 : ret = flush_space(root, space_info, num_bytes, orig_bytes,
4516 : flush_state);
4517 134 : flush_state++;
4518 :
4519 : /*
4520 : * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4521 : * would happen. So skip delalloc flush.
4522 : */
4523 134 : if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4524 0 : (flush_state == FLUSH_DELALLOC ||
4525 : flush_state == FLUSH_DELALLOC_WAIT))
4526 : flush_state = ALLOC_CHUNK;
4527 :
4528 134 : if (!ret)
4529 : goto again;
4530 2 : else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4531 1 : flush_state < COMMIT_TRANS)
4532 : goto again;
4533 1 : else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4534 1 : flush_state <= COMMIT_TRANS)
4535 : goto again;
4536 :
4537 : out:
4538 222686 : if (ret == -ENOSPC &&
4539 0 : unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4540 0 : struct btrfs_block_rsv *global_rsv =
4541 0 : &root->fs_info->global_block_rsv;
4542 :
4543 0 : if (block_rsv != global_rsv &&
4544 0 : !block_rsv_use_bytes(global_rsv, orig_bytes))
4545 : ret = 0;
4546 : }
4547 222686 : if (ret == -ENOSPC)
4548 0 : trace_btrfs_space_reservation(root->fs_info,
4549 : "space_info:enospc",
4550 : space_info->flags, orig_bytes, 1);
4551 222683 : if (flushing) {
4552 : spin_lock(&space_info->lock);
4553 76 : space_info->flush = 0;
4554 76 : wake_up_all(&space_info->wait);
4555 : spin_unlock(&space_info->lock);
4556 : }
4557 222683 : return ret;
4558 : }
4559 :
4560 68514 : static struct btrfs_block_rsv *get_block_rsv(
4561 : const struct btrfs_trans_handle *trans,
4562 : const struct btrfs_root *root)
4563 : {
4564 : struct btrfs_block_rsv *block_rsv = NULL;
4565 :
4566 68514 : if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4567 37567 : block_rsv = trans->block_rsv;
4568 :
4569 68514 : if (root == root->fs_info->csum_root && trans->adding_csums)
4570 4320 : block_rsv = trans->block_rsv;
4571 :
4572 68514 : if (root == root->fs_info->uuid_root)
4573 263 : block_rsv = trans->block_rsv;
4574 :
4575 68514 : if (!block_rsv)
4576 26387 : block_rsv = root->block_rsv;
4577 :
4578 68514 : if (!block_rsv)
4579 3354 : block_rsv = &root->fs_info->empty_block_rsv;
4580 :
4581 68514 : return block_rsv;
4582 : }
4583 :
4584 160165 : static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4585 : u64 num_bytes)
4586 : {
4587 : int ret = -ENOSPC;
4588 : spin_lock(&block_rsv->lock);
4589 160184 : if (block_rsv->reserved >= num_bytes) {
4590 160171 : block_rsv->reserved -= num_bytes;
4591 160171 : if (block_rsv->reserved < block_rsv->size)
4592 160171 : block_rsv->full = 0;
4593 : ret = 0;
4594 : }
4595 : spin_unlock(&block_rsv->lock);
4596 160184 : return ret;
4597 : }
4598 :
4599 323967 : static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4600 : u64 num_bytes, int update_size)
4601 : {
4602 : spin_lock(&block_rsv->lock);
4603 323970 : block_rsv->reserved += num_bytes;
4604 323970 : if (update_size)
4605 316106 : block_rsv->size += num_bytes;
4606 7864 : else if (block_rsv->reserved >= block_rsv->size)
4607 7864 : block_rsv->full = 1;
4608 : spin_unlock(&block_rsv->lock);
4609 323970 : }
4610 :
4611 0 : int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4612 : struct btrfs_block_rsv *dest, u64 num_bytes,
4613 : int min_factor)
4614 : {
4615 : struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4616 : u64 min_bytes;
4617 :
4618 0 : if (global_rsv->space_info != dest->space_info)
4619 : return -ENOSPC;
4620 :
4621 : spin_lock(&global_rsv->lock);
4622 0 : min_bytes = div_factor(global_rsv->size, min_factor);
4623 0 : if (global_rsv->reserved < min_bytes + num_bytes) {
4624 : spin_unlock(&global_rsv->lock);
4625 0 : return -ENOSPC;
4626 : }
4627 0 : global_rsv->reserved -= num_bytes;
4628 0 : if (global_rsv->reserved < global_rsv->size)
4629 0 : global_rsv->full = 0;
4630 : spin_unlock(&global_rsv->lock);
4631 :
4632 0 : block_rsv_add_bytes(dest, num_bytes, 1);
4633 0 : return 0;
4634 : }
4635 :
4636 293261 : static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4637 : struct btrfs_block_rsv *block_rsv,
4638 : struct btrfs_block_rsv *dest, u64 num_bytes)
4639 : {
4640 293261 : struct btrfs_space_info *space_info = block_rsv->space_info;
4641 :
4642 : spin_lock(&block_rsv->lock);
4643 293302 : if (num_bytes == (u64)-1)
4644 11065 : num_bytes = block_rsv->size;
4645 293302 : block_rsv->size -= num_bytes;
4646 293302 : if (block_rsv->reserved >= block_rsv->size) {
4647 289940 : num_bytes = block_rsv->reserved - block_rsv->size;
4648 289940 : block_rsv->reserved = block_rsv->size;
4649 289940 : block_rsv->full = 1;
4650 : } else {
4651 : num_bytes = 0;
4652 : }
4653 : spin_unlock(&block_rsv->lock);
4654 :
4655 293300 : if (num_bytes > 0) {
4656 232254 : if (dest) {
4657 : spin_lock(&dest->lock);
4658 232037 : if (!dest->full) {
4659 : u64 bytes_to_add;
4660 :
4661 2776 : bytes_to_add = dest->size - dest->reserved;
4662 2776 : bytes_to_add = min(num_bytes, bytes_to_add);
4663 2776 : dest->reserved += bytes_to_add;
4664 2776 : if (dest->reserved >= dest->size)
4665 2366 : dest->full = 1;
4666 2776 : num_bytes -= bytes_to_add;
4667 : }
4668 : spin_unlock(&dest->lock);
4669 : }
4670 232255 : if (num_bytes) {
4671 : spin_lock(&space_info->lock);
4672 231837 : space_info->bytes_may_use -= num_bytes;
4673 231837 : trace_btrfs_space_reservation(fs_info, "space_info",
4674 : space_info->flags, num_bytes, 0);
4675 : spin_unlock(&space_info->lock);
4676 : }
4677 : }
4678 293304 : }
4679 :
4680 104781 : static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4681 : struct btrfs_block_rsv *dst, u64 num_bytes)
4682 : {
4683 : int ret;
4684 :
4685 104781 : ret = block_rsv_use_bytes(src, num_bytes);
4686 104787 : if (ret)
4687 : return ret;
4688 :
4689 104787 : block_rsv_add_bytes(dst, num_bytes, 1);
4690 104786 : return 0;
4691 : }
4692 :
4693 1554 : void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4694 : {
4695 11929 : memset(rsv, 0, sizeof(*rsv));
4696 11929 : spin_lock_init(&rsv->lock);
4697 11929 : rsv->type = type;
4698 1554 : }
4699 :
4700 10375 : struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4701 : unsigned short type)
4702 : {
4703 : struct btrfs_block_rsv *block_rsv;
4704 10375 : struct btrfs_fs_info *fs_info = root->fs_info;
4705 :
4706 : block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4707 10375 : if (!block_rsv)
4708 : return NULL;
4709 :
4710 : btrfs_init_block_rsv(block_rsv, type);
4711 10375 : block_rsv->space_info = __find_space_info(fs_info,
4712 : BTRFS_BLOCK_GROUP_METADATA);
4713 10375 : return block_rsv;
4714 : }
4715 :
4716 11282 : void btrfs_free_block_rsv(struct btrfs_root *root,
4717 : struct btrfs_block_rsv *rsv)
4718 : {
4719 11282 : if (!rsv)
4720 11282 : return;
4721 10376 : btrfs_block_rsv_release(root, rsv, (u64)-1);
4722 10376 : kfree(rsv);
4723 : }
4724 :
4725 56987 : int btrfs_block_rsv_add(struct btrfs_root *root,
4726 : struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4727 : enum btrfs_reserve_flush_enum flush)
4728 : {
4729 : int ret;
4730 :
4731 56987 : if (num_bytes == 0)
4732 : return 0;
4733 :
4734 56987 : ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4735 56988 : if (!ret) {
4736 56988 : block_rsv_add_bytes(block_rsv, num_bytes, 1);
4737 56988 : return 0;
4738 : }
4739 :
4740 : return ret;
4741 : }
4742 :
4743 174833 : int btrfs_block_rsv_check(struct btrfs_root *root,
4744 : struct btrfs_block_rsv *block_rsv, int min_factor)
4745 : {
4746 : u64 num_bytes = 0;
4747 : int ret = -ENOSPC;
4748 :
4749 174833 : if (!block_rsv)
4750 : return 0;
4751 :
4752 : spin_lock(&block_rsv->lock);
4753 174848 : num_bytes = div_factor(block_rsv->size, min_factor);
4754 174848 : if (block_rsv->reserved >= num_bytes)
4755 : ret = 0;
4756 : spin_unlock(&block_rsv->lock);
4757 :
4758 174846 : return ret;
4759 : }
4760 :
4761 10447 : int btrfs_block_rsv_refill(struct btrfs_root *root,
4762 : struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4763 : enum btrfs_reserve_flush_enum flush)
4764 : {
4765 : u64 num_bytes = 0;
4766 : int ret = -ENOSPC;
4767 :
4768 10447 : if (!block_rsv)
4769 : return 0;
4770 :
4771 : spin_lock(&block_rsv->lock);
4772 : num_bytes = min_reserved;
4773 10447 : if (block_rsv->reserved >= num_bytes)
4774 : ret = 0;
4775 : else
4776 7864 : num_bytes -= block_rsv->reserved;
4777 : spin_unlock(&block_rsv->lock);
4778 :
4779 10447 : if (!ret)
4780 : return 0;
4781 :
4782 7864 : ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4783 7864 : if (!ret) {
4784 7864 : block_rsv_add_bytes(block_rsv, num_bytes, 0);
4785 7864 : return 0;
4786 : }
4787 :
4788 : return ret;
4789 : }
4790 :
4791 95152 : int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4792 : struct btrfs_block_rsv *dst_rsv,
4793 : u64 num_bytes)
4794 : {
4795 95152 : return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4796 : }
4797 :
4798 293036 : void btrfs_block_rsv_release(struct btrfs_root *root,
4799 : struct btrfs_block_rsv *block_rsv,
4800 : u64 num_bytes)
4801 : {
4802 293036 : struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4803 586074 : if (global_rsv == block_rsv ||
4804 293038 : block_rsv->space_info != global_rsv->space_info)
4805 : global_rsv = NULL;
4806 293036 : block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4807 : num_bytes);
4808 293076 : }
4809 :
4810 : /*
4811 : * helper to calculate size of global block reservation.
4812 : * the desired value is sum of space used by extent tree,
4813 : * checksum tree and root tree
4814 : */
4815 2406 : static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4816 : {
4817 : struct btrfs_space_info *sinfo;
4818 : u64 num_bytes;
4819 : u64 meta_used;
4820 : u64 data_used;
4821 2406 : int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4822 :
4823 : sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4824 : spin_lock(&sinfo->lock);
4825 2406 : data_used = sinfo->bytes_used;
4826 : spin_unlock(&sinfo->lock);
4827 :
4828 : sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4829 : spin_lock(&sinfo->lock);
4830 2406 : if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4831 : data_used = 0;
4832 2406 : meta_used = sinfo->bytes_used;
4833 : spin_unlock(&sinfo->lock);
4834 :
4835 2406 : num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4836 : csum_size * 2;
4837 4812 : num_bytes += div64_u64(data_used + meta_used, 50);
4838 :
4839 2406 : if (num_bytes * 3 > meta_used)
4840 : num_bytes = div64_u64(meta_used, 3);
4841 :
4842 2406 : return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4843 : }
4844 :
4845 2406 : static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4846 : {
4847 : struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4848 2406 : struct btrfs_space_info *sinfo = block_rsv->space_info;
4849 : u64 num_bytes;
4850 :
4851 2406 : num_bytes = calc_global_metadata_size(fs_info);
4852 :
4853 : spin_lock(&sinfo->lock);
4854 : spin_lock(&block_rsv->lock);
4855 :
4856 2406 : block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4857 :
4858 7218 : num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4859 4812 : sinfo->bytes_reserved + sinfo->bytes_readonly +
4860 2406 : sinfo->bytes_may_use;
4861 :
4862 2406 : if (sinfo->total_bytes > num_bytes) {
4863 2403 : num_bytes = sinfo->total_bytes - num_bytes;
4864 2403 : block_rsv->reserved += num_bytes;
4865 2403 : sinfo->bytes_may_use += num_bytes;
4866 2403 : trace_btrfs_space_reservation(fs_info, "space_info",
4867 : sinfo->flags, num_bytes, 1);
4868 : }
4869 :
4870 2406 : if (block_rsv->reserved >= block_rsv->size) {
4871 2403 : num_bytes = block_rsv->reserved - block_rsv->size;
4872 2403 : sinfo->bytes_may_use -= num_bytes;
4873 2403 : trace_btrfs_space_reservation(fs_info, "space_info",
4874 : sinfo->flags, num_bytes, 0);
4875 2403 : block_rsv->reserved = block_rsv->size;
4876 2403 : block_rsv->full = 1;
4877 : }
4878 :
4879 : spin_unlock(&block_rsv->lock);
4880 : spin_unlock(&sinfo->lock);
4881 2406 : }
4882 :
4883 221 : static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4884 : {
4885 : struct btrfs_space_info *space_info;
4886 :
4887 : space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4888 221 : fs_info->chunk_block_rsv.space_info = space_info;
4889 :
4890 : space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4891 221 : fs_info->global_block_rsv.space_info = space_info;
4892 221 : fs_info->delalloc_block_rsv.space_info = space_info;
4893 221 : fs_info->trans_block_rsv.space_info = space_info;
4894 221 : fs_info->empty_block_rsv.space_info = space_info;
4895 221 : fs_info->delayed_block_rsv.space_info = space_info;
4896 :
4897 221 : fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4898 221 : fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4899 221 : fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4900 221 : fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4901 221 : if (fs_info->quota_root)
4902 3 : fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
4903 221 : fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4904 :
4905 221 : update_global_block_rsv(fs_info);
4906 221 : }
4907 :
4908 221 : static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4909 : {
4910 221 : block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4911 : (u64)-1);
4912 221 : WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4913 221 : WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4914 221 : WARN_ON(fs_info->trans_block_rsv.size > 0);
4915 221 : WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4916 221 : WARN_ON(fs_info->chunk_block_rsv.size > 0);
4917 221 : WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4918 221 : WARN_ON(fs_info->delayed_block_rsv.size > 0);
4919 221 : WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4920 221 : }
4921 :
4922 359896 : void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4923 : struct btrfs_root *root)
4924 : {
4925 359896 : if (!trans->block_rsv)
4926 : return;
4927 :
4928 125052 : if (!trans->bytes_reserved)
4929 : return;
4930 :
4931 51824 : trace_btrfs_space_reservation(root->fs_info, "transaction",
4932 : trans->transid, trans->bytes_reserved, 0);
4933 51824 : btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4934 51824 : trans->bytes_reserved = 0;
4935 : }
4936 :
4937 : /* Can only return 0 or -ENOSPC */
4938 9630 : int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4939 : struct inode *inode)
4940 : {
4941 19260 : struct btrfs_root *root = BTRFS_I(inode)->root;
4942 9630 : struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4943 9630 : struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4944 :
4945 : /*
4946 : * We need to hold space in order to delete our orphan item once we've
4947 : * added it, so this takes the reservation so we can release it later
4948 : * when we are truly done with the orphan item.
4949 : */
4950 : u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4951 9630 : trace_btrfs_space_reservation(root->fs_info, "orphan",
4952 : btrfs_ino(inode), num_bytes, 1);
4953 9630 : return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4954 : }
4955 :
4956 9630 : void btrfs_orphan_release_metadata(struct inode *inode)
4957 : {
4958 9630 : struct btrfs_root *root = BTRFS_I(inode)->root;
4959 : u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4960 9630 : trace_btrfs_space_reservation(root->fs_info, "orphan",
4961 : btrfs_ino(inode), num_bytes, 0);
4962 9630 : btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4963 9630 : }
4964 :
4965 : /*
4966 : * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
4967 : * root: the root of the parent directory
4968 : * rsv: block reservation
4969 : * items: the number of items that we need do reservation
4970 : * qgroup_reserved: used to return the reserved size in qgroup
4971 : *
4972 : * This function is used to reserve the space for snapshot/subvolume
4973 : * creation and deletion. Those operations are different with the
4974 : * common file/directory operations, they change two fs/file trees
4975 : * and root tree, the number of items that the qgroup reserves is
4976 : * different with the free space reservation. So we can not use
4977 : * the space reseravtion mechanism in start_transaction().
4978 : */
4979 456 : int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
4980 : struct btrfs_block_rsv *rsv,
4981 : int items,
4982 : u64 *qgroup_reserved,
4983 : bool use_global_rsv)
4984 : {
4985 : u64 num_bytes;
4986 : int ret;
4987 228 : struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4988 :
4989 228 : if (root->fs_info->quota_enabled) {
4990 : /* One for parent inode, two for dir entries */
4991 11 : num_bytes = 3 * root->leafsize;
4992 11 : ret = btrfs_qgroup_reserve(root, num_bytes);
4993 11 : if (ret)
4994 : return ret;
4995 : } else {
4996 : num_bytes = 0;
4997 : }
4998 :
4999 228 : *qgroup_reserved = num_bytes;
5000 :
5001 228 : num_bytes = btrfs_calc_trans_metadata_size(root, items);
5002 456 : rsv->space_info = __find_space_info(root->fs_info,
5003 : BTRFS_BLOCK_GROUP_METADATA);
5004 228 : ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5005 : BTRFS_RESERVE_FLUSH_ALL);
5006 :
5007 228 : if (ret == -ENOSPC && use_global_rsv)
5008 : ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5009 :
5010 228 : if (ret) {
5011 0 : if (*qgroup_reserved)
5012 0 : btrfs_qgroup_free(root, *qgroup_reserved);
5013 : }
5014 :
5015 228 : return ret;
5016 : }
5017 :
5018 228 : void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5019 : struct btrfs_block_rsv *rsv,
5020 : u64 qgroup_reserved)
5021 : {
5022 228 : btrfs_block_rsv_release(root, rsv, (u64)-1);
5023 228 : if (qgroup_reserved)
5024 11 : btrfs_qgroup_free(root, qgroup_reserved);
5025 228 : }
5026 :
5027 : /**
5028 : * drop_outstanding_extent - drop an outstanding extent
5029 : * @inode: the inode we're dropping the extent for
5030 : *
5031 : * This is called when we are freeing up an outstanding extent, either called
5032 : * after an error or after an extent is written. This will return the number of
5033 : * reserved extents that need to be freed. This must be called with
5034 : * BTRFS_I(inode)->lock held.
5035 : */
5036 110632 : static unsigned drop_outstanding_extent(struct inode *inode)
5037 : {
5038 : unsigned drop_inode_space = 0;
5039 : unsigned dropped_extents = 0;
5040 :
5041 110632 : BUG_ON(!BTRFS_I(inode)->outstanding_extents);
5042 110632 : BTRFS_I(inode)->outstanding_extents--;
5043 :
5044 150455 : if (BTRFS_I(inode)->outstanding_extents == 0 &&
5045 : test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5046 39822 : &BTRFS_I(inode)->runtime_flags))
5047 : drop_inode_space = 1;
5048 :
5049 : /*
5050 : * If we have more or the same amount of outsanding extents than we have
5051 : * reserved then we need to leave the reserved extents count alone.
5052 : */
5053 221266 : if (BTRFS_I(inode)->outstanding_extents >=
5054 110633 : BTRFS_I(inode)->reserved_extents)
5055 : return drop_inode_space;
5056 :
5057 58102 : dropped_extents = BTRFS_I(inode)->reserved_extents -
5058 : BTRFS_I(inode)->outstanding_extents;
5059 58102 : BTRFS_I(inode)->reserved_extents -= dropped_extents;
5060 58102 : return dropped_extents + drop_inode_space;
5061 : }
5062 :
5063 : /**
5064 : * calc_csum_metadata_size - return the amount of metada space that must be
5065 : * reserved/free'd for the given bytes.
5066 : * @inode: the inode we're manipulating
5067 : * @num_bytes: the number of bytes in question
5068 : * @reserve: 1 if we are reserving space, 0 if we are freeing space
5069 : *
5070 : * This adjusts the number of csum_bytes in the inode and then returns the
5071 : * correct amount of metadata that must either be reserved or freed. We
5072 : * calculate how many checksums we can fit into one leaf and then divide the
5073 : * number of bytes that will need to be checksumed by this value to figure out
5074 : * how many checksums will be required. If we are adding bytes then the number
5075 : * may go up and we will return the number of additional bytes that must be
5076 : * reserved. If it is going down we will return the number of bytes that must
5077 : * be freed.
5078 : *
5079 : * This must be called with BTRFS_I(inode)->lock held.
5080 : */
5081 239712 : static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5082 : int reserve)
5083 : {
5084 319777 : struct btrfs_root *root = BTRFS_I(inode)->root;
5085 : u64 csum_size;
5086 : int num_csums_per_leaf;
5087 : int num_csums;
5088 : int old_csums;
5089 :
5090 239712 : if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5091 0 : BTRFS_I(inode)->csum_bytes == 0)
5092 : return 0;
5093 :
5094 479428 : old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
5095 239714 : if (reserve)
5096 154342 : BTRFS_I(inode)->csum_bytes += num_bytes;
5097 : else
5098 85372 : BTRFS_I(inode)->csum_bytes -= num_bytes;
5099 239714 : csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
5100 239714 : num_csums_per_leaf = (int)div64_u64(csum_size,
5101 : sizeof(struct btrfs_csum_item) +
5102 : sizeof(struct btrfs_disk_key));
5103 479428 : num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
5104 239714 : num_csums = num_csums + num_csums_per_leaf - 1;
5105 239714 : num_csums = num_csums / num_csums_per_leaf;
5106 :
5107 239714 : old_csums = old_csums + num_csums_per_leaf - 1;
5108 239714 : old_csums = old_csums / num_csums_per_leaf;
5109 :
5110 : /* No change, no need to reserve more */
5111 239714 : if (old_csums == num_csums)
5112 : return 0;
5113 :
5114 80065 : if (reserve)
5115 80408 : return btrfs_calc_trans_metadata_size(root,
5116 40204 : num_csums - old_csums);
5117 :
5118 79722 : return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5119 : }
5120 :
5121 154344 : int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5122 : {
5123 308689 : struct btrfs_root *root = BTRFS_I(inode)->root;
5124 154344 : struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5125 : u64 to_reserve = 0;
5126 : u64 csum_bytes;
5127 : unsigned nr_extents = 0;
5128 : int extra_reserve = 0;
5129 : enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5130 : int ret = 0;
5131 : bool delalloc_lock = true;
5132 : u64 to_free = 0;
5133 : unsigned dropped;
5134 :
5135 : /* If we are a free space inode we need to not flush since we will be in
5136 : * the middle of a transaction commit. We also don't need the delalloc
5137 : * mutex since we won't race with anybody. We need this mostly to make
5138 : * lockdep shut its filthy mouth.
5139 : */
5140 154344 : if (btrfs_is_free_space_inode(inode)) {
5141 : flush = BTRFS_RESERVE_NO_FLUSH;
5142 : delalloc_lock = false;
5143 : }
5144 :
5145 308689 : if (flush != BTRFS_RESERVE_NO_FLUSH &&
5146 154344 : btrfs_transaction_in_commit(root->fs_info))
5147 1026 : schedule_timeout(1);
5148 :
5149 154345 : if (delalloc_lock)
5150 154345 : mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5151 :
5152 154343 : num_bytes = ALIGN(num_bytes, root->sectorsize);
5153 :
5154 : spin_lock(&BTRFS_I(inode)->lock);
5155 154344 : BTRFS_I(inode)->outstanding_extents++;
5156 :
5157 154344 : if (BTRFS_I(inode)->outstanding_extents >
5158 154344 : BTRFS_I(inode)->reserved_extents)
5159 63004 : nr_extents = BTRFS_I(inode)->outstanding_extents -
5160 : BTRFS_I(inode)->reserved_extents;
5161 :
5162 : /*
5163 : * Add an item to reserve for updating the inode when we complete the
5164 : * delalloc io.
5165 : */
5166 154344 : if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5167 : &BTRFS_I(inode)->runtime_flags)) {
5168 39865 : nr_extents++;
5169 : extra_reserve = 1;
5170 : }
5171 :
5172 : to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5173 154344 : to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5174 154340 : csum_bytes = BTRFS_I(inode)->csum_bytes;
5175 : spin_unlock(&BTRFS_I(inode)->lock);
5176 :
5177 154344 : if (root->fs_info->quota_enabled) {
5178 4790 : ret = btrfs_qgroup_reserve(root, num_bytes +
5179 4790 : nr_extents * root->leafsize);
5180 4791 : if (ret)
5181 : goto out_fail;
5182 : }
5183 :
5184 154333 : ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5185 154330 : if (unlikely(ret)) {
5186 0 : if (root->fs_info->quota_enabled)
5187 0 : btrfs_qgroup_free(root, num_bytes +
5188 0 : nr_extents * root->leafsize);
5189 : goto out_fail;
5190 : }
5191 :
5192 : spin_lock(&BTRFS_I(inode)->lock);
5193 154331 : if (extra_reserve) {
5194 : set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5195 : &BTRFS_I(inode)->runtime_flags);
5196 39857 : nr_extents--;
5197 : }
5198 154331 : BTRFS_I(inode)->reserved_extents += nr_extents;
5199 : spin_unlock(&BTRFS_I(inode)->lock);
5200 :
5201 154332 : if (delalloc_lock)
5202 154331 : mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5203 :
5204 154332 : if (to_reserve)
5205 63370 : trace_btrfs_space_reservation(root->fs_info, "delalloc",
5206 : btrfs_ino(inode), to_reserve, 1);
5207 154332 : block_rsv_add_bytes(block_rsv, to_reserve, 1);
5208 :
5209 154333 : return 0;
5210 :
5211 : out_fail:
5212 : spin_lock(&BTRFS_I(inode)->lock);
5213 12 : dropped = drop_outstanding_extent(inode);
5214 : /*
5215 : * If the inodes csum_bytes is the same as the original
5216 : * csum_bytes then we know we haven't raced with any free()ers
5217 : * so we can just reduce our inodes csum bytes and carry on.
5218 : */
5219 12 : if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5220 12 : calc_csum_metadata_size(inode, num_bytes, 0);
5221 : } else {
5222 : u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5223 : u64 bytes;
5224 :
5225 : /*
5226 : * This is tricky, but first we need to figure out how much we
5227 : * free'd from any free-ers that occured during this
5228 : * reservation, so we reset ->csum_bytes to the csum_bytes
5229 : * before we dropped our lock, and then call the free for the
5230 : * number of bytes that were freed while we were trying our
5231 : * reservation.
5232 : */
5233 0 : bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5234 0 : BTRFS_I(inode)->csum_bytes = csum_bytes;
5235 0 : to_free = calc_csum_metadata_size(inode, bytes, 0);
5236 :
5237 :
5238 : /*
5239 : * Now we need to see how much we would have freed had we not
5240 : * been making this reservation and our ->csum_bytes were not
5241 : * artificially inflated.
5242 : */
5243 0 : BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5244 : bytes = csum_bytes - orig_csum_bytes;
5245 0 : bytes = calc_csum_metadata_size(inode, bytes, 0);
5246 :
5247 : /*
5248 : * Now reset ->csum_bytes to what it should be. If bytes is
5249 : * more than to_free then we would have free'd more space had we
5250 : * not had an artificially high ->csum_bytes, so we need to free
5251 : * the remainder. If bytes is the same or less then we don't
5252 : * need to do anything, the other free-ers did the correct
5253 : * thing.
5254 : */
5255 0 : BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5256 0 : if (bytes > to_free)
5257 0 : to_free = bytes - to_free;
5258 : else
5259 : to_free = 0;
5260 : }
5261 : spin_unlock(&BTRFS_I(inode)->lock);
5262 12 : if (dropped)
5263 1 : to_free += btrfs_calc_trans_metadata_size(root, dropped);
5264 :
5265 12 : if (to_free) {
5266 1 : btrfs_block_rsv_release(root, block_rsv, to_free);
5267 1 : trace_btrfs_space_reservation(root->fs_info, "delalloc",
5268 : btrfs_ino(inode), to_free, 0);
5269 : }
5270 12 : if (delalloc_lock)
5271 12 : mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5272 12 : return ret;
5273 : }
5274 :
5275 : /**
5276 : * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5277 : * @inode: the inode to release the reservation for
5278 : * @num_bytes: the number of bytes we're releasing
5279 : *
5280 : * This will release the metadata reservation for an inode. This can be called
5281 : * once we complete IO for a given set of bytes to release their metadata
5282 : * reservations.
5283 : */
5284 110613 : void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5285 : {
5286 168712 : struct btrfs_root *root = BTRFS_I(inode)->root;
5287 : u64 to_free = 0;
5288 : unsigned dropped;
5289 :
5290 110613 : num_bytes = ALIGN(num_bytes, root->sectorsize);
5291 : spin_lock(&BTRFS_I(inode)->lock);
5292 110621 : dropped = drop_outstanding_extent(inode);
5293 :
5294 110618 : if (num_bytes)
5295 85360 : to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5296 : spin_unlock(&BTRFS_I(inode)->lock);
5297 110616 : if (dropped > 0)
5298 58099 : to_free += btrfs_calc_trans_metadata_size(root, dropped);
5299 :
5300 110616 : trace_btrfs_space_reservation(root->fs_info, "delalloc",
5301 : btrfs_ino(inode), to_free, 0);
5302 110615 : if (root->fs_info->quota_enabled) {
5303 8271 : btrfs_qgroup_free(root, num_bytes +
5304 8271 : dropped * root->leafsize);
5305 : }
5306 :
5307 110617 : btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5308 : to_free);
5309 110620 : }
5310 :
5311 : /**
5312 : * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5313 : * @inode: inode we're writing to
5314 : * @num_bytes: the number of bytes we want to allocate
5315 : *
5316 : * This will do the following things
5317 : *
5318 : * o reserve space in the data space info for num_bytes
5319 : * o reserve space in the metadata space info based on number of outstanding
5320 : * extents and how much csums will be needed
5321 : * o add to the inodes ->delalloc_bytes
5322 : * o add it to the fs_info's delalloc inodes list.
5323 : *
5324 : * This will return 0 for success and -ENOSPC if there is no space left.
5325 : */
5326 35037 : int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5327 : {
5328 : int ret;
5329 :
5330 35037 : ret = btrfs_check_data_free_space(inode, num_bytes);
5331 35039 : if (ret)
5332 : return ret;
5333 :
5334 35039 : ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5335 35039 : if (ret) {
5336 10 : btrfs_free_reserved_data_space(inode, num_bytes);
5337 10 : return ret;
5338 : }
5339 :
5340 : return 0;
5341 : }
5342 :
5343 : /**
5344 : * btrfs_delalloc_release_space - release data and metadata space for delalloc
5345 : * @inode: inode we're releasing space for
5346 : * @num_bytes: the number of bytes we want to free up
5347 : *
5348 : * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5349 : * called in the case that we don't need the metadata AND data reservations
5350 : * anymore. So if there is an error or we insert an inline extent.
5351 : *
5352 : * This function will release the metadata space that was not used and will
5353 : * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5354 : * list if there are no delalloc bytes left.
5355 : */
5356 0 : void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5357 : {
5358 0 : btrfs_delalloc_release_metadata(inode, num_bytes);
5359 0 : btrfs_free_reserved_data_space(inode, num_bytes);
5360 0 : }
5361 :
5362 170354 : static int update_block_group(struct btrfs_root *root,
5363 : u64 bytenr, u64 num_bytes, int alloc)
5364 : {
5365 : struct btrfs_block_group_cache *cache = NULL;
5366 170354 : struct btrfs_fs_info *info = root->fs_info;
5367 : u64 total = num_bytes;
5368 : u64 old_val;
5369 : u64 byte_in_group;
5370 : int factor;
5371 :
5372 : /* block accounting for super block */
5373 : spin_lock(&info->delalloc_root_lock);
5374 170356 : old_val = btrfs_super_bytes_used(info->super_copy);
5375 170356 : if (alloc)
5376 106085 : old_val += num_bytes;
5377 : else
5378 64271 : old_val -= num_bytes;
5379 : btrfs_set_super_bytes_used(info->super_copy, old_val);
5380 : spin_unlock(&info->delalloc_root_lock);
5381 :
5382 340709 : while (total) {
5383 : cache = btrfs_lookup_block_group(info, bytenr);
5384 170356 : if (!cache)
5385 : return -ENOENT;
5386 170356 : if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5387 : BTRFS_BLOCK_GROUP_RAID1 |
5388 : BTRFS_BLOCK_GROUP_RAID10))
5389 : factor = 2;
5390 : else
5391 : factor = 1;
5392 : /*
5393 : * If this block group has free space cache written out, we
5394 : * need to make sure to load it if we are removing space. This
5395 : * is because we need the unpinning stage to actually add the
5396 : * space back to the block group, otherwise we will leak space.
5397 : */
5398 170356 : if (!alloc && cache->cached == BTRFS_CACHE_NO)
5399 5 : cache_block_group(cache, 1);
5400 :
5401 170356 : byte_in_group = bytenr - cache->key.objectid;
5402 170356 : WARN_ON(byte_in_group > cache->key.offset);
5403 :
5404 170356 : spin_lock(&cache->space_info->lock);
5405 : spin_lock(&cache->lock);
5406 :
5407 340712 : if (btrfs_test_opt(root, SPACE_CACHE) &&
5408 170356 : cache->disk_cache_state < BTRFS_DC_CLEAR)
5409 5387 : cache->disk_cache_state = BTRFS_DC_CLEAR;
5410 :
5411 170356 : cache->dirty = 1;
5412 : old_val = btrfs_block_group_used(&cache->item);
5413 170356 : num_bytes = min(total, cache->key.offset - byte_in_group);
5414 170356 : if (alloc) {
5415 106085 : old_val += num_bytes;
5416 : btrfs_set_block_group_used(&cache->item, old_val);
5417 106085 : cache->reserved -= num_bytes;
5418 106085 : cache->space_info->bytes_reserved -= num_bytes;
5419 106085 : cache->space_info->bytes_used += num_bytes;
5420 106085 : cache->space_info->disk_used += num_bytes * factor;
5421 : spin_unlock(&cache->lock);
5422 106085 : spin_unlock(&cache->space_info->lock);
5423 : } else {
5424 64271 : old_val -= num_bytes;
5425 : btrfs_set_block_group_used(&cache->item, old_val);
5426 64271 : cache->pinned += num_bytes;
5427 64271 : cache->space_info->bytes_pinned += num_bytes;
5428 64271 : cache->space_info->bytes_used -= num_bytes;
5429 64271 : cache->space_info->disk_used -= num_bytes * factor;
5430 : spin_unlock(&cache->lock);
5431 64271 : spin_unlock(&cache->space_info->lock);
5432 :
5433 64271 : set_extent_dirty(info->pinned_extents,
5434 64271 : bytenr, bytenr + num_bytes - 1,
5435 : GFP_NOFS | __GFP_NOFAIL);
5436 : }
5437 170356 : btrfs_put_block_group(cache);
5438 170354 : total -= num_bytes;
5439 170354 : bytenr += num_bytes;
5440 : }
5441 : return 0;
5442 : }
5443 :
5444 112258 : static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5445 : {
5446 : struct btrfs_block_group_cache *cache;
5447 : u64 bytenr;
5448 :
5449 112258 : spin_lock(&root->fs_info->block_group_cache_lock);
5450 112265 : bytenr = root->fs_info->first_logical_byte;
5451 : spin_unlock(&root->fs_info->block_group_cache_lock);
5452 :
5453 112265 : if (bytenr < (u64)-1)
5454 : return bytenr;
5455 :
5456 22 : cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5457 22 : if (!cache)
5458 : return 0;
5459 :
5460 22 : bytenr = cache->key.objectid;
5461 22 : btrfs_put_block_group(cache);
5462 :
5463 : return bytenr;
5464 : }
5465 :
5466 4969 : static int pin_down_extent(struct btrfs_root *root,
5467 : struct btrfs_block_group_cache *cache,
5468 : u64 bytenr, u64 num_bytes, int reserved)
5469 : {
5470 4969 : spin_lock(&cache->space_info->lock);
5471 : spin_lock(&cache->lock);
5472 4969 : cache->pinned += num_bytes;
5473 4969 : cache->space_info->bytes_pinned += num_bytes;
5474 4969 : if (reserved) {
5475 4969 : cache->reserved -= num_bytes;
5476 4969 : cache->space_info->bytes_reserved -= num_bytes;
5477 : }
5478 : spin_unlock(&cache->lock);
5479 4969 : spin_unlock(&cache->space_info->lock);
5480 :
5481 4969 : set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5482 4969 : bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5483 4969 : if (reserved)
5484 4969 : trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5485 4969 : return 0;
5486 : }
5487 :
5488 : /*
5489 : * this function must be called within transaction
5490 : */
5491 889 : int btrfs_pin_extent(struct btrfs_root *root,
5492 : u64 bytenr, u64 num_bytes, int reserved)
5493 : {
5494 : struct btrfs_block_group_cache *cache;
5495 :
5496 889 : cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5497 889 : BUG_ON(!cache); /* Logic error */
5498 :
5499 889 : pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5500 :
5501 889 : btrfs_put_block_group(cache);
5502 889 : return 0;
5503 : }
5504 :
5505 : /*
5506 : * this function must be called within transaction
5507 : */
5508 0 : int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5509 : u64 bytenr, u64 num_bytes)
5510 : {
5511 : struct btrfs_block_group_cache *cache;
5512 : int ret;
5513 :
5514 0 : cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5515 0 : if (!cache)
5516 : return -EINVAL;
5517 :
5518 : /*
5519 : * pull in the free space cache (if any) so that our pin
5520 : * removes the free space from the cache. We have load_only set
5521 : * to one because the slow code to read in the free extents does check
5522 : * the pinned extents.
5523 : */
5524 0 : cache_block_group(cache, 1);
5525 :
5526 0 : pin_down_extent(root, cache, bytenr, num_bytes, 0);
5527 :
5528 : /* remove us from the free space cache (if we're there at all) */
5529 0 : ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5530 0 : btrfs_put_block_group(cache);
5531 0 : return ret;
5532 : }
5533 :
5534 0 : static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5535 : {
5536 : int ret;
5537 : struct btrfs_block_group_cache *block_group;
5538 : struct btrfs_caching_control *caching_ctl;
5539 :
5540 0 : block_group = btrfs_lookup_block_group(root->fs_info, start);
5541 0 : if (!block_group)
5542 : return -EINVAL;
5543 :
5544 0 : cache_block_group(block_group, 0);
5545 0 : caching_ctl = get_caching_control(block_group);
5546 :
5547 0 : if (!caching_ctl) {
5548 : /* Logic error */
5549 0 : BUG_ON(!block_group_cache_done(block_group));
5550 0 : ret = btrfs_remove_free_space(block_group, start, num_bytes);
5551 : } else {
5552 0 : mutex_lock(&caching_ctl->mutex);
5553 :
5554 0 : if (start >= caching_ctl->progress) {
5555 0 : ret = add_excluded_extent(root, start, num_bytes);
5556 0 : } else if (start + num_bytes <= caching_ctl->progress) {
5557 0 : ret = btrfs_remove_free_space(block_group,
5558 : start, num_bytes);
5559 : } else {
5560 0 : num_bytes = caching_ctl->progress - start;
5561 0 : ret = btrfs_remove_free_space(block_group,
5562 : start, num_bytes);
5563 0 : if (ret)
5564 : goto out_lock;
5565 :
5566 0 : num_bytes = (start + num_bytes) -
5567 0 : caching_ctl->progress;
5568 : start = caching_ctl->progress;
5569 0 : ret = add_excluded_extent(root, start, num_bytes);
5570 : }
5571 : out_lock:
5572 0 : mutex_unlock(&caching_ctl->mutex);
5573 0 : put_caching_control(caching_ctl);
5574 : }
5575 0 : btrfs_put_block_group(block_group);
5576 0 : return ret;
5577 : }
5578 :
5579 0 : int btrfs_exclude_logged_extents(struct btrfs_root *log,
5580 0 : struct extent_buffer *eb)
5581 : {
5582 : struct btrfs_file_extent_item *item;
5583 : struct btrfs_key key;
5584 : int found_type;
5585 : int i;
5586 :
5587 0 : if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5588 : return 0;
5589 :
5590 0 : for (i = 0; i < btrfs_header_nritems(eb); i++) {
5591 0 : btrfs_item_key_to_cpu(eb, &key, i);
5592 0 : if (key.type != BTRFS_EXTENT_DATA_KEY)
5593 0 : continue;
5594 0 : item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5595 : found_type = btrfs_file_extent_type(eb, item);
5596 0 : if (found_type == BTRFS_FILE_EXTENT_INLINE)
5597 0 : continue;
5598 0 : if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5599 0 : continue;
5600 0 : key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5601 0 : key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5602 0 : __exclude_logged_extent(log, key.objectid, key.offset);
5603 : }
5604 :
5605 : return 0;
5606 : }
5607 :
5608 : /**
5609 : * btrfs_update_reserved_bytes - update the block_group and space info counters
5610 : * @cache: The cache we are manipulating
5611 : * @num_bytes: The number of bytes in question
5612 : * @reserve: One of the reservation enums
5613 : * @delalloc: The blocks are allocated for the delalloc write
5614 : *
5615 : * This is called by the allocator when it reserves space, or by somebody who is
5616 : * freeing space that was never actually used on disk. For example if you
5617 : * reserve some space for a new leaf in transaction A and before transaction A
5618 : * commits you free that leaf, you call this with reserve set to 0 in order to
5619 : * clear the reservation.
5620 : *
5621 : * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5622 : * ENOSPC accounting. For data we handle the reservation through clearing the
5623 : * delalloc bits in the io_tree. We have to do this since we could end up
5624 : * allocating less disk space for the amount of data we have reserved in the
5625 : * case of compression.
5626 : *
5627 : * If this is a reservation and the block group has become read only we cannot
5628 : * make the reservation and return -EAGAIN, otherwise this function always
5629 : * succeeds.
5630 : */
5631 113443 : static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5632 : u64 num_bytes, int reserve, int delalloc)
5633 : {
5634 113443 : struct btrfs_space_info *space_info = cache->space_info;
5635 : int ret = 0;
5636 :
5637 : spin_lock(&space_info->lock);
5638 : spin_lock(&cache->lock);
5639 113446 : if (reserve != RESERVE_FREE) {
5640 112266 : if (cache->ro) {
5641 : ret = -EAGAIN;
5642 : } else {
5643 112266 : cache->reserved += num_bytes;
5644 112266 : space_info->bytes_reserved += num_bytes;
5645 112266 : if (reserve == RESERVE_ALLOC) {
5646 58886 : trace_btrfs_space_reservation(cache->fs_info,
5647 : "space_info", space_info->flags,
5648 : num_bytes, 0);
5649 58886 : space_info->bytes_may_use -= num_bytes;
5650 : }
5651 :
5652 112266 : if (delalloc)
5653 45798 : cache->delalloc_bytes += num_bytes;
5654 : }
5655 : } else {
5656 1180 : if (cache->ro)
5657 0 : space_info->bytes_readonly += num_bytes;
5658 1180 : cache->reserved -= num_bytes;
5659 1180 : space_info->bytes_reserved -= num_bytes;
5660 :
5661 1180 : if (delalloc)
5662 0 : cache->delalloc_bytes -= num_bytes;
5663 : }
5664 : spin_unlock(&cache->lock);
5665 : spin_unlock(&space_info->lock);
5666 113444 : return ret;
5667 : }
5668 :
5669 2098 : void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5670 : struct btrfs_root *root)
5671 : {
5672 2098 : struct btrfs_fs_info *fs_info = root->fs_info;
5673 : struct btrfs_caching_control *next;
5674 : struct btrfs_caching_control *caching_ctl;
5675 : struct btrfs_block_group_cache *cache;
5676 :
5677 2098 : down_write(&fs_info->commit_root_sem);
5678 :
5679 2304 : list_for_each_entry_safe(caching_ctl, next,
5680 : &fs_info->caching_block_groups, list) {
5681 206 : cache = caching_ctl->block_group;
5682 206 : if (block_group_cache_done(cache)) {
5683 206 : cache->last_byte_to_unpin = (u64)-1;
5684 : list_del_init(&caching_ctl->list);
5685 206 : put_caching_control(caching_ctl);
5686 : } else {
5687 0 : cache->last_byte_to_unpin = caching_ctl->progress;
5688 : }
5689 : }
5690 :
5691 2098 : if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5692 1110 : fs_info->pinned_extents = &fs_info->freed_extents[1];
5693 : else
5694 988 : fs_info->pinned_extents = &fs_info->freed_extents[0];
5695 :
5696 2098 : up_write(&fs_info->commit_root_sem);
5697 :
5698 2098 : update_global_block_rsv(fs_info);
5699 2098 : }
5700 :
5701 32303 : static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
5702 : {
5703 32303 : struct btrfs_fs_info *fs_info = root->fs_info;
5704 32305 : struct btrfs_block_group_cache *cache = NULL;
5705 : struct btrfs_space_info *space_info;
5706 : struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5707 : u64 len;
5708 : bool readonly;
5709 :
5710 64608 : while (start <= end) {
5711 : readonly = false;
5712 32307 : if (!cache ||
5713 2 : start >= cache->key.objectid + cache->key.offset) {
5714 32305 : if (cache)
5715 2 : btrfs_put_block_group(cache);
5716 : cache = btrfs_lookup_block_group(fs_info, start);
5717 32305 : BUG_ON(!cache); /* Logic error */
5718 : }
5719 :
5720 32305 : len = cache->key.objectid + cache->key.offset - start;
5721 32305 : len = min(len, end + 1 - start);
5722 :
5723 32305 : if (start < cache->last_byte_to_unpin) {
5724 32305 : len = min(len, cache->last_byte_to_unpin - start);
5725 : btrfs_add_free_space(cache, start, len);
5726 : }
5727 :
5728 32305 : start += len;
5729 32305 : space_info = cache->space_info;
5730 :
5731 : spin_lock(&space_info->lock);
5732 : spin_lock(&cache->lock);
5733 32305 : cache->pinned -= len;
5734 32305 : space_info->bytes_pinned -= len;
5735 32305 : percpu_counter_add(&space_info->total_bytes_pinned, -len);
5736 32305 : if (cache->ro) {
5737 242 : space_info->bytes_readonly += len;
5738 : readonly = true;
5739 : }
5740 : spin_unlock(&cache->lock);
5741 32305 : if (!readonly && global_rsv->space_info == space_info) {
5742 : spin_lock(&global_rsv->lock);
5743 23374 : if (!global_rsv->full) {
5744 204 : len = min(len, global_rsv->size -
5745 : global_rsv->reserved);
5746 204 : global_rsv->reserved += len;
5747 204 : space_info->bytes_may_use += len;
5748 204 : if (global_rsv->reserved >= global_rsv->size)
5749 43 : global_rsv->full = 1;
5750 : }
5751 : spin_unlock(&global_rsv->lock);
5752 : }
5753 : spin_unlock(&space_info->lock);
5754 : }
5755 :
5756 32303 : if (cache)
5757 32303 : btrfs_put_block_group(cache);
5758 32303 : return 0;
5759 : }
5760 :
5761 2098 : int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5762 32303 : struct btrfs_root *root)
5763 : {
5764 2098 : struct btrfs_fs_info *fs_info = root->fs_info;
5765 : struct extent_io_tree *unpin;
5766 : u64 start;
5767 : u64 end;
5768 : int ret;
5769 :
5770 2098 : if (trans->aborted)
5771 : return 0;
5772 :
5773 2098 : if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5774 988 : unpin = &fs_info->freed_extents[1];
5775 : else
5776 : unpin = &fs_info->freed_extents[0];
5777 :
5778 : while (1) {
5779 34401 : ret = find_first_extent_bit(unpin, 0, &start, &end,
5780 : EXTENT_DIRTY, NULL);
5781 34401 : if (ret)
5782 : break;
5783 :
5784 32303 : if (btrfs_test_opt(root, DISCARD))
5785 0 : ret = btrfs_discard_extent(root, start,
5786 0 : end + 1 - start, NULL);
5787 :
5788 32303 : clear_extent_dirty(unpin, start, end, GFP_NOFS);
5789 64606 : unpin_extent_range(root, start, end);
5790 32303 : cond_resched();
5791 32303 : }
5792 :
5793 : return 0;
5794 : }
5795 :
5796 86060 : static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
5797 : u64 owner, u64 root_objectid)
5798 : {
5799 : struct btrfs_space_info *space_info;
5800 : u64 flags;
5801 :
5802 86060 : if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5803 53405 : if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
5804 : flags = BTRFS_BLOCK_GROUP_SYSTEM;
5805 : else
5806 : flags = BTRFS_BLOCK_GROUP_METADATA;
5807 : } else {
5808 : flags = BTRFS_BLOCK_GROUP_DATA;
5809 : }
5810 :
5811 : space_info = __find_space_info(fs_info, flags);
5812 86062 : BUG_ON(!space_info); /* Logic bug */
5813 86062 : percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
5814 86062 : }
5815 :
5816 :
5817 71066 : static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5818 : struct btrfs_root *root,
5819 : u64 bytenr, u64 num_bytes, u64 parent,
5820 : u64 root_objectid, u64 owner_objectid,
5821 : u64 owner_offset, int refs_to_drop,
5822 : struct btrfs_delayed_extent_op *extent_op,
5823 : int no_quota)
5824 : {
5825 : struct btrfs_key key;
5826 15648 : struct btrfs_path *path;
5827 71066 : struct btrfs_fs_info *info = root->fs_info;
5828 71066 : struct btrfs_root *extent_root = info->extent_root;
5829 : struct extent_buffer *leaf;
5830 : struct btrfs_extent_item *ei;
5831 : struct btrfs_extent_inline_ref *iref;
5832 : int ret;
5833 : int is_data;
5834 : int extent_slot = 0;
5835 : int found_extent = 0;
5836 : int num_to_del = 1;
5837 : u32 item_size;
5838 : u64 refs;
5839 71066 : int last_ref = 0;
5840 : enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_SUB_EXCL;
5841 71066 : bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
5842 : SKINNY_METADATA);
5843 :
5844 78534 : if (!info->quota_enabled || !is_fstree(root_objectid))
5845 : no_quota = 1;
5846 :
5847 71066 : path = btrfs_alloc_path();
5848 71063 : if (!path)
5849 : return -ENOMEM;
5850 :
5851 71063 : path->reada = 1;
5852 71063 : path->leave_spinning = 1;
5853 :
5854 71063 : is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5855 71063 : BUG_ON(!is_data && refs_to_drop != 1);
5856 :
5857 71063 : if (is_data)
5858 : skinny_metadata = 0;
5859 :
5860 71063 : ret = lookup_extent_backref(trans, extent_root, path, &iref,
5861 : bytenr, num_bytes, parent,
5862 : root_objectid, owner_objectid,
5863 : owner_offset);
5864 71066 : if (ret == 0) {
5865 71066 : extent_slot = path->slots[0];
5866 142132 : while (extent_slot >= 0) {
5867 71066 : btrfs_item_key_to_cpu(path->nodes[0], &key,
5868 : extent_slot);
5869 71066 : if (key.objectid != bytenr)
5870 : break;
5871 142132 : if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5872 71066 : key.offset == num_bytes) {
5873 : found_extent = 1;
5874 : break;
5875 : }
5876 0 : if (key.type == BTRFS_METADATA_ITEM_KEY &&
5877 0 : key.offset == owner_objectid) {
5878 : found_extent = 1;
5879 : break;
5880 : }
5881 0 : if (path->slots[0] - extent_slot > 5)
5882 : break;
5883 0 : extent_slot--;
5884 : }
5885 : #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5886 71066 : item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5887 71066 : if (found_extent && item_size < sizeof(*ei))
5888 : found_extent = 0;
5889 : #endif
5890 71066 : if (!found_extent) {
5891 0 : BUG_ON(iref);
5892 0 : ret = remove_extent_backref(trans, extent_root, path,
5893 : NULL, refs_to_drop,
5894 : is_data, &last_ref);
5895 0 : if (ret) {
5896 0 : btrfs_abort_transaction(trans, extent_root, ret);
5897 0 : goto out;
5898 : }
5899 0 : btrfs_release_path(path);
5900 0 : path->leave_spinning = 1;
5901 :
5902 0 : key.objectid = bytenr;
5903 0 : key.type = BTRFS_EXTENT_ITEM_KEY;
5904 0 : key.offset = num_bytes;
5905 :
5906 0 : if (!is_data && skinny_metadata) {
5907 0 : key.type = BTRFS_METADATA_ITEM_KEY;
5908 0 : key.offset = owner_objectid;
5909 : }
5910 :
5911 0 : ret = btrfs_search_slot(trans, extent_root,
5912 : &key, path, -1, 1);
5913 0 : if (ret > 0 && skinny_metadata && path->slots[0]) {
5914 : /*
5915 : * Couldn't find our skinny metadata item,
5916 : * see if we have ye olde extent item.
5917 : */
5918 0 : path->slots[0]--;
5919 0 : btrfs_item_key_to_cpu(path->nodes[0], &key,
5920 : path->slots[0]);
5921 0 : if (key.objectid == bytenr &&
5922 0 : key.type == BTRFS_EXTENT_ITEM_KEY &&
5923 0 : key.offset == num_bytes)
5924 : ret = 0;
5925 : }
5926 :
5927 0 : if (ret > 0 && skinny_metadata) {
5928 : skinny_metadata = false;
5929 0 : key.objectid = bytenr;
5930 0 : key.type = BTRFS_EXTENT_ITEM_KEY;
5931 0 : key.offset = num_bytes;
5932 0 : btrfs_release_path(path);
5933 0 : ret = btrfs_search_slot(trans, extent_root,
5934 : &key, path, -1, 1);
5935 : }
5936 :
5937 0 : if (ret) {
5938 0 : btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5939 : ret, bytenr);
5940 0 : if (ret > 0)
5941 0 : btrfs_print_leaf(extent_root,
5942 : path->nodes[0]);
5943 : }
5944 0 : if (ret < 0) {
5945 0 : btrfs_abort_transaction(trans, extent_root, ret);
5946 0 : goto out;
5947 : }
5948 0 : extent_slot = path->slots[0];
5949 : }
5950 0 : } else if (WARN_ON(ret == -ENOENT)) {
5951 0 : btrfs_print_leaf(extent_root, path->nodes[0]);
5952 0 : btrfs_err(info,
5953 : "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
5954 : bytenr, parent, root_objectid, owner_objectid,
5955 : owner_offset);
5956 0 : btrfs_abort_transaction(trans, extent_root, ret);
5957 0 : goto out;
5958 : } else {
5959 0 : btrfs_abort_transaction(trans, extent_root, ret);
5960 0 : goto out;
5961 : }
5962 :
5963 71066 : leaf = path->nodes[0];
5964 : item_size = btrfs_item_size_nr(leaf, extent_slot);
5965 : #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5966 71066 : if (item_size < sizeof(*ei)) {
5967 0 : BUG_ON(found_extent || extent_slot != path->slots[0]);
5968 0 : ret = convert_extent_item_v0(trans, extent_root, path,
5969 : owner_objectid, 0);
5970 0 : if (ret < 0) {
5971 0 : btrfs_abort_transaction(trans, extent_root, ret);
5972 0 : goto out;
5973 : }
5974 :
5975 0 : btrfs_release_path(path);
5976 0 : path->leave_spinning = 1;
5977 :
5978 0 : key.objectid = bytenr;
5979 0 : key.type = BTRFS_EXTENT_ITEM_KEY;
5980 0 : key.offset = num_bytes;
5981 :
5982 0 : ret = btrfs_search_slot(trans, extent_root, &key, path,
5983 : -1, 1);
5984 0 : if (ret) {
5985 0 : btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5986 : ret, bytenr);
5987 0 : btrfs_print_leaf(extent_root, path->nodes[0]);
5988 : }
5989 0 : if (ret < 0) {
5990 0 : btrfs_abort_transaction(trans, extent_root, ret);
5991 0 : goto out;
5992 : }
5993 :
5994 0 : extent_slot = path->slots[0];
5995 0 : leaf = path->nodes[0];
5996 : item_size = btrfs_item_size_nr(leaf, extent_slot);
5997 : }
5998 : #endif
5999 71066 : BUG_ON(item_size < sizeof(*ei));
6000 71065 : ei = btrfs_item_ptr(leaf, extent_slot,
6001 : struct btrfs_extent_item);
6002 120350 : if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6003 49285 : key.type == BTRFS_EXTENT_ITEM_KEY) {
6004 : struct btrfs_tree_block_info *bi;
6005 49285 : BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6006 49285 : bi = (struct btrfs_tree_block_info *)(ei + 1);
6007 49285 : WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6008 : }
6009 :
6010 : refs = btrfs_extent_refs(leaf, ei);
6011 71065 : if (refs < refs_to_drop) {
6012 0 : btrfs_err(info, "trying to drop %d refs but we only have %Lu "
6013 : "for bytenr %Lu", refs_to_drop, refs, bytenr);
6014 : ret = -EINVAL;
6015 0 : btrfs_abort_transaction(trans, extent_root, ret);
6016 0 : goto out;
6017 : }
6018 71065 : refs -= refs_to_drop;
6019 :
6020 71065 : if (refs > 0) {
6021 : type = BTRFS_QGROUP_OPER_SUB_SHARED;
6022 6795 : if (extent_op)
6023 298 : __run_delayed_extent_op(extent_op, leaf, ei);
6024 : /*
6025 : * In the case of inline back ref, reference count will
6026 : * be updated by remove_extent_backref
6027 : */
6028 6795 : if (iref) {
6029 6795 : BUG_ON(!found_extent);
6030 : } else {
6031 : btrfs_set_extent_refs(leaf, ei, refs);
6032 0 : btrfs_mark_buffer_dirty(leaf);
6033 : }
6034 6795 : if (found_extent) {
6035 6795 : ret = remove_extent_backref(trans, extent_root, path,
6036 : iref, refs_to_drop,
6037 : is_data, &last_ref);
6038 6795 : if (ret) {
6039 0 : btrfs_abort_transaction(trans, extent_root, ret);
6040 0 : goto out;
6041 : }
6042 : }
6043 6795 : add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6044 : root_objectid);
6045 : } else {
6046 64270 : if (found_extent) {
6047 79919 : BUG_ON(is_data && refs_to_drop !=
6048 : extent_data_ref_count(root, path, iref));
6049 64271 : if (iref) {
6050 64271 : BUG_ON(path->slots[0] != extent_slot);
6051 : } else {
6052 0 : BUG_ON(path->slots[0] != extent_slot + 1);
6053 0 : path->slots[0] = extent_slot;
6054 : num_to_del = 2;
6055 : }
6056 : }
6057 :
6058 64270 : last_ref = 1;
6059 64270 : ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6060 : num_to_del);
6061 64271 : if (ret) {
6062 0 : btrfs_abort_transaction(trans, extent_root, ret);
6063 0 : goto out;
6064 : }
6065 64271 : btrfs_release_path(path);
6066 :
6067 64271 : if (is_data) {
6068 15648 : ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6069 15648 : if (ret) {
6070 0 : btrfs_abort_transaction(trans, extent_root, ret);
6071 0 : goto out;
6072 : }
6073 : }
6074 :
6075 64271 : ret = update_block_group(root, bytenr, num_bytes, 0);
6076 64271 : if (ret) {
6077 0 : btrfs_abort_transaction(trans, extent_root, ret);
6078 0 : goto out;
6079 : }
6080 : }
6081 71066 : btrfs_release_path(path);
6082 :
6083 : /* Deal with the quota accounting */
6084 71066 : if (!ret && last_ref && !no_quota) {
6085 : int mod_seq = 0;
6086 :
6087 5568 : if (owner_objectid >= BTRFS_FIRST_FREE_OBJECTID &&
6088 5568 : type == BTRFS_QGROUP_OPER_SUB_SHARED)
6089 : mod_seq = 1;
6090 :
6091 5568 : ret = btrfs_qgroup_record_ref(trans, info, root_objectid,
6092 : bytenr, num_bytes, type,
6093 : mod_seq);
6094 : }
6095 : out:
6096 71066 : btrfs_free_path(path);
6097 71066 : return ret;
6098 : }
6099 :
6100 : /*
6101 : * when we free an block, it is possible (and likely) that we free the last
6102 : * delayed ref for that extent as well. This searches the delayed ref tree for
6103 : * a given extent, and if there are no other delayed refs to be processed, it
6104 : * removes it from the tree.
6105 : */
6106 11390 : static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6107 : struct btrfs_root *root, u64 bytenr)
6108 : {
6109 : struct btrfs_delayed_ref_head *head;
6110 : struct btrfs_delayed_ref_root *delayed_refs;
6111 : int ret = 0;
6112 :
6113 11390 : delayed_refs = &trans->transaction->delayed_refs;
6114 : spin_lock(&delayed_refs->lock);
6115 11390 : head = btrfs_find_delayed_ref_head(trans, bytenr);
6116 11390 : if (!head)
6117 : goto out_delayed_unlock;
6118 :
6119 : spin_lock(&head->lock);
6120 11390 : if (rb_first(&head->ref_root))
6121 : goto out;
6122 :
6123 2171 : if (head->extent_op) {
6124 2170 : if (!head->must_insert_reserved)
6125 : goto out;
6126 : btrfs_free_delayed_extent_op(head->extent_op);
6127 2170 : head->extent_op = NULL;
6128 : }
6129 :
6130 : /*
6131 : * waiting for the lock here would deadlock. If someone else has it
6132 : * locked they are already in the process of dropping it anyway
6133 : */
6134 2171 : if (!mutex_trylock(&head->mutex))
6135 : goto out;
6136 :
6137 : /*
6138 : * at this point we have a head with no other entries. Go
6139 : * ahead and process it.
6140 : */
6141 2170 : head->node.in_tree = 0;
6142 2170 : rb_erase(&head->href_node, &delayed_refs->href_root);
6143 :
6144 2170 : atomic_dec(&delayed_refs->num_entries);
6145 :
6146 : /*
6147 : * we don't take a ref on the node because we're removing it from the
6148 : * tree, so we just steal the ref the tree was holding.
6149 : */
6150 2170 : delayed_refs->num_heads--;
6151 2170 : if (head->processing == 0)
6152 2170 : delayed_refs->num_heads_ready--;
6153 2170 : head->processing = 0;
6154 : spin_unlock(&head->lock);
6155 : spin_unlock(&delayed_refs->lock);
6156 :
6157 2170 : BUG_ON(head->extent_op);
6158 2170 : if (head->must_insert_reserved)
6159 : ret = 1;
6160 :
6161 2170 : mutex_unlock(&head->mutex);
6162 2170 : btrfs_put_delayed_ref(&head->node);
6163 : return ret;
6164 : out:
6165 : spin_unlock(&head->lock);
6166 :
6167 : out_delayed_unlock:
6168 : spin_unlock(&delayed_refs->lock);
6169 : return 0;
6170 : }
6171 :
6172 54155 : void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6173 : struct btrfs_root *root,
6174 157758 : struct extent_buffer *buf,
6175 : u64 parent, int last_ref)
6176 : {
6177 1180 : struct btrfs_block_group_cache *cache = NULL;
6178 : int pin = 1;
6179 : int ret;
6180 :
6181 54155 : if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6182 103138 : ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6183 51569 : buf->start, buf->len,
6184 : parent, root->root_key.objectid,
6185 : btrfs_header_level(buf),
6186 : BTRFS_DROP_DELAYED_REF, NULL, 0);
6187 51570 : BUG_ON(ret); /* -ENOMEM */
6188 : }
6189 :
6190 54156 : if (!last_ref)
6191 54156 : return;
6192 :
6193 53685 : cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6194 :
6195 53685 : if (btrfs_header_generation(buf) == trans->transid) {
6196 13975 : if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6197 11390 : ret = check_ref_cleanup(trans, root, buf->start);
6198 11390 : if (!ret)
6199 : goto out;
6200 : }
6201 :
6202 4755 : if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6203 3575 : pin_down_extent(root, cache, buf->start, buf->len, 1);
6204 3575 : goto out;
6205 : }
6206 :
6207 1180 : WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6208 :
6209 1180 : btrfs_add_free_space(cache, buf->start, buf->len);
6210 1180 : btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6211 1180 : trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6212 : pin = 0;
6213 : }
6214 : out:
6215 53684 : if (pin)
6216 105008 : add_pinned_bytes(root->fs_info, buf->len,
6217 : btrfs_header_level(buf),
6218 : root->root_key.objectid);
6219 :
6220 : /*
6221 : * Deleting the buffer, clear the corrupt flag since it doesn't matter
6222 : * anymore.
6223 : */
6224 : clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6225 53685 : btrfs_put_block_group(cache);
6226 : }
6227 :
6228 : /* Can return -ENOMEM */
6229 26762 : int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6230 : u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6231 : u64 owner, u64 offset, int no_quota)
6232 : {
6233 : int ret;
6234 26762 : struct btrfs_fs_info *fs_info = root->fs_info;
6235 :
6236 : #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
6237 : if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state)))
6238 : return 0;
6239 : #endif
6240 26762 : add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6241 :
6242 : /*
6243 : * tree log blocks never actually go into the extent allocation
6244 : * tree, just update pinning info and exit early.
6245 : */
6246 26763 : if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6247 0 : WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6248 : /* unlocks the pinned mutex */
6249 0 : btrfs_pin_extent(root, bytenr, num_bytes, 1);
6250 : ret = 0;
6251 26763 : } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6252 238 : ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6253 : num_bytes,
6254 : parent, root_objectid, (int)owner,
6255 : BTRFS_DROP_DELAYED_REF, NULL, no_quota);
6256 : } else {
6257 26525 : ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6258 : num_bytes,
6259 : parent, root_objectid, owner,
6260 : offset, BTRFS_DROP_DELAYED_REF,
6261 : NULL, no_quota);
6262 : }
6263 26763 : return ret;
6264 : }
6265 :
6266 : static u64 stripe_align(struct btrfs_root *root,
6267 : struct btrfs_block_group_cache *cache,
6268 : u64 val, u64 num_bytes)
6269 : {
6270 112265 : u64 ret = ALIGN(val, root->stripesize);
6271 : return ret;
6272 : }
6273 :
6274 : /*
6275 : * when we wait for progress in the block group caching, its because
6276 : * our allocation attempt failed at least once. So, we must sleep
6277 : * and let some progress happen before we try again.
6278 : *
6279 : * This function will sleep at least once waiting for new free space to
6280 : * show up, and then it will check the block group free space numbers
6281 : * for our min num_bytes. Another option is to have it go ahead
6282 : * and look in the rbtree for a free extent of a given size, but this
6283 : * is a good start.
6284 : *
6285 : * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6286 : * any of the information in this block group.
6287 : */
6288 : static noinline void
6289 128 : wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6290 : u64 num_bytes)
6291 : {
6292 : struct btrfs_caching_control *caching_ctl;
6293 :
6294 128 : caching_ctl = get_caching_control(cache);
6295 128 : if (!caching_ctl)
6296 128 : return;
6297 :
6298 256 : wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6299 : (cache->free_space_ctl->free_space >= num_bytes));
6300 :
6301 128 : put_caching_control(caching_ctl);
6302 : }
6303 :
6304 : static noinline int
6305 0 : wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6306 : {
6307 : struct btrfs_caching_control *caching_ctl;
6308 : int ret = 0;
6309 :
6310 0 : caching_ctl = get_caching_control(cache);
6311 0 : if (!caching_ctl)
6312 0 : return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6313 :
6314 0 : wait_event(caching_ctl->wait, block_group_cache_done(cache));
6315 0 : if (cache->cached == BTRFS_CACHE_ERROR)
6316 : ret = -EIO;
6317 0 : put_caching_control(caching_ctl);
6318 0 : return ret;
6319 : }
6320 :
6321 213561 : int __get_raid_index(u64 flags)
6322 : {
6323 213561 : if (flags & BTRFS_BLOCK_GROUP_RAID10)
6324 : return BTRFS_RAID_RAID10;
6325 213546 : else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6326 : return BTRFS_RAID_RAID1;
6327 208494 : else if (flags & BTRFS_BLOCK_GROUP_DUP)
6328 : return BTRFS_RAID_DUP;
6329 126488 : else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6330 : return BTRFS_RAID_RAID0;
6331 124960 : else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6332 : return BTRFS_RAID_RAID5;
6333 124939 : else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6334 : return BTRFS_RAID_RAID6;
6335 :
6336 124920 : return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6337 : }
6338 :
6339 0 : int get_block_group_index(struct btrfs_block_group_cache *cache)
6340 : {
6341 101250 : return __get_raid_index(cache->flags);
6342 : }
6343 :
6344 : static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6345 : [BTRFS_RAID_RAID10] = "raid10",
6346 : [BTRFS_RAID_RAID1] = "raid1",
6347 : [BTRFS_RAID_DUP] = "dup",
6348 : [BTRFS_RAID_RAID0] = "raid0",
6349 : [BTRFS_RAID_SINGLE] = "single",
6350 : [BTRFS_RAID_RAID5] = "raid5",
6351 : [BTRFS_RAID_RAID6] = "raid6",
6352 : };
6353 :
6354 : static const char *get_raid_name(enum btrfs_raid_types type)
6355 : {
6356 1090 : if (type >= BTRFS_NR_RAID_TYPES)
6357 : return NULL;
6358 :
6359 1090 : return btrfs_raid_type_names[type];
6360 : }
6361 :
6362 : enum btrfs_loop_type {
6363 : LOOP_CACHING_NOWAIT = 0,
6364 : LOOP_CACHING_WAIT = 1,
6365 : LOOP_ALLOC_CHUNK = 2,
6366 : LOOP_NO_EMPTY_SIZE = 3,
6367 : };
6368 :
6369 : static inline void
6370 : btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6371 : int delalloc)
6372 : {
6373 56904 : if (delalloc)
6374 11998 : down_read(&cache->data_rwsem);
6375 : }
6376 :
6377 : static inline void
6378 98349 : btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6379 : int delalloc)
6380 : {
6381 : btrfs_get_block_group(cache);
6382 98349 : if (delalloc)
6383 58480 : down_read(&cache->data_rwsem);
6384 98349 : }
6385 :
6386 : static struct btrfs_block_group_cache *
6387 40871 : btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6388 : struct btrfs_free_cluster *cluster,
6389 : int delalloc)
6390 : {
6391 : struct btrfs_block_group_cache *used_bg;
6392 : bool locked = false;
6393 : again:
6394 : spin_lock(&cluster->refill_lock);
6395 40871 : if (locked) {
6396 0 : if (used_bg == cluster->block_group)
6397 : return used_bg;
6398 :
6399 0 : up_read(&used_bg->data_rwsem);
6400 0 : btrfs_put_block_group(used_bg);
6401 : }
6402 :
6403 40871 : used_bg = cluster->block_group;
6404 40871 : if (!used_bg)
6405 : return NULL;
6406 :
6407 40506 : if (used_bg == block_group)
6408 : return used_bg;
6409 :
6410 : btrfs_get_block_group(used_bg);
6411 :
6412 27 : if (!delalloc)
6413 : return used_bg;
6414 :
6415 0 : if (down_read_trylock(&used_bg->data_rwsem))
6416 : return used_bg;
6417 :
6418 : spin_unlock(&cluster->refill_lock);
6419 0 : down_read(&used_bg->data_rwsem);
6420 : locked = true;
6421 0 : goto again;
6422 : }
6423 :
6424 : static inline void
6425 : btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6426 : int delalloc)
6427 : {
6428 155274 : if (delalloc)
6429 70476 : up_read(&cache->data_rwsem);
6430 155275 : btrfs_put_block_group(cache);
6431 : }
6432 :
6433 : /*
6434 : * walks the btree of allocated extents and find a hole of a given size.
6435 : * The key ins is changed to record the hole:
6436 : * ins->objectid == start position
6437 : * ins->flags = BTRFS_EXTENT_ITEM_KEY
6438 : * ins->offset == the size of the hole.
6439 : * Any available blocks before search_start are skipped.
6440 : *
6441 : * If there is no suitable free space, we will record the max size of
6442 : * the free space extent currently.
6443 : */
6444 112255 : static noinline int find_free_extent(struct btrfs_root *orig_root,
6445 : u64 num_bytes, u64 empty_size,
6446 : u64 hint_byte, struct btrfs_key *ins,
6447 : u64 flags, int delalloc)
6448 : {
6449 : int ret = 0;
6450 224520 : struct btrfs_root *root = orig_root->fs_info->extent_root;
6451 : struct btrfs_free_cluster *last_ptr = NULL;
6452 209820 : struct btrfs_block_group_cache *block_group = NULL;
6453 : u64 search_start = 0;
6454 112255 : u64 max_extent_size = 0;
6455 : int empty_cluster = 2 * 1024 * 1024;
6456 : struct btrfs_space_info *space_info;
6457 : int loop = 0;
6458 112255 : int index = __get_raid_index(flags);
6459 112255 : int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6460 112255 : RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6461 : bool failed_cluster_refill = false;
6462 : bool failed_alloc = false;
6463 : bool use_cluster = true;
6464 : bool have_caching_bg = false;
6465 :
6466 112255 : WARN_ON(num_bytes < root->sectorsize);
6467 : btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
6468 112255 : ins->objectid = 0;
6469 112255 : ins->offset = 0;
6470 :
6471 112255 : trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6472 :
6473 112258 : space_info = __find_space_info(root->fs_info, flags);
6474 112257 : if (!space_info) {
6475 0 : btrfs_err(root->fs_info, "No space info for %llu", flags);
6476 0 : return -ENOSPC;
6477 : }
6478 :
6479 : /*
6480 : * If the space info is for both data and metadata it means we have a
6481 : * small filesystem and we can't use the clustering stuff.
6482 : */
6483 112257 : if (btrfs_mixed_space_info(space_info))
6484 : use_cluster = false;
6485 :
6486 112257 : if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6487 40693 : last_ptr = &root->fs_info->meta_alloc_cluster;
6488 40693 : if (!btrfs_test_opt(root, SSD))
6489 : empty_cluster = 64 * 1024;
6490 : }
6491 :
6492 162154 : if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6493 49897 : btrfs_test_opt(root, SSD)) {
6494 0 : last_ptr = &root->fs_info->data_alloc_cluster;
6495 : }
6496 :
6497 112257 : if (last_ptr) {
6498 : spin_lock(&last_ptr->lock);
6499 40694 : if (last_ptr->block_group)
6500 40506 : hint_byte = last_ptr->window_start;
6501 : spin_unlock(&last_ptr->lock);
6502 : }
6503 :
6504 112258 : search_start = max(search_start, first_logical_byte(root, 0));
6505 112265 : search_start = max(search_start, hint_byte);
6506 :
6507 112265 : if (!last_ptr)
6508 : empty_cluster = 0;
6509 :
6510 112265 : if (search_start == hint_byte) {
6511 111481 : block_group = btrfs_lookup_block_group(root->fs_info,
6512 : search_start);
6513 : /*
6514 : * we don't want to use the block group if it doesn't match our
6515 : * allocation bits, or if its not cached.
6516 : *
6517 : * However if we are re-searching with an ideal block group
6518 : * picked out then we don't care that the block group is cached.
6519 : */
6520 279886 : if (block_group && block_group_bits(block_group, flags) &&
6521 56929 : block_group->cached != BTRFS_CACHE_NO) {
6522 56926 : down_read(&space_info->groups_sem);
6523 113872 : if (list_empty(&block_group->list) ||
6524 : block_group->ro) {
6525 : /*
6526 : * someone is removing this block group,
6527 : * we can't jump into the have_block_group
6528 : * target because our list pointers are not
6529 : * valid
6530 : */
6531 22 : btrfs_put_block_group(block_group);
6532 22 : up_read(&space_info->groups_sem);
6533 : } else {
6534 : index = get_block_group_index(block_group);
6535 : btrfs_lock_block_group(block_group, delalloc);
6536 : goto have_block_group;
6537 : }
6538 54558 : } else if (block_group) {
6539 54547 : btrfs_put_block_group(block_group);
6540 : }
6541 : }
6542 : search:
6543 : have_caching_bg = false;
6544 56560 : down_read(&space_info->groups_sem);
6545 99545 : list_for_each_entry(block_group, &space_info->block_groups[index],
6546 : list) {
6547 : u64 offset;
6548 : int cached;
6549 :
6550 98349 : btrfs_grab_block_group(block_group, delalloc);
6551 98347 : search_start = block_group->key.objectid;
6552 :
6553 : /*
6554 : * this can happen if we end up cycling through all the
6555 : * raid types, but we want to make sure we only allocate
6556 : * for the proper type.
6557 : */
6558 98347 : if (!block_group_bits(block_group, flags)) {
6559 : u64 extra = BTRFS_BLOCK_GROUP_DUP |
6560 : BTRFS_BLOCK_GROUP_RAID1 |
6561 : BTRFS_BLOCK_GROUP_RAID5 |
6562 : BTRFS_BLOCK_GROUP_RAID6 |
6563 : BTRFS_BLOCK_GROUP_RAID10;
6564 :
6565 : /*
6566 : * if they asked for extra copies and this block group
6567 : * doesn't provide them, bail. This does allow us to
6568 : * fill raid0 from raid1.
6569 : */
6570 114 : if ((flags & extra) && !(block_group->flags & extra))
6571 : goto loop;
6572 : }
6573 :
6574 : have_block_group:
6575 155270 : cached = block_group_cache_done(block_group);
6576 155266 : if (unlikely(!cached)) {
6577 512 : ret = cache_block_group(block_group, 0);
6578 512 : BUG_ON(ret < 0);
6579 : ret = 0;
6580 : }
6581 :
6582 155266 : if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6583 : goto loop;
6584 155266 : if (unlikely(block_group->ro))
6585 : goto loop;
6586 :
6587 : /*
6588 : * Ok we want to try and use the cluster allocator, so
6589 : * lets look there
6590 : */
6591 155006 : if (last_ptr) {
6592 5 : struct btrfs_block_group_cache *used_block_group;
6593 : unsigned long aligned_cluster;
6594 : /*
6595 : * the refill lock keeps out other
6596 : * people trying to start a new cluster
6597 : */
6598 40871 : used_block_group = btrfs_lock_cluster(block_group,
6599 : last_ptr,
6600 : delalloc);
6601 40871 : if (!used_block_group)
6602 : goto refill_cluster;
6603 :
6604 40533 : if (used_block_group != block_group &&
6605 32 : (used_block_group->ro ||
6606 : !block_group_bits(used_block_group, flags)))
6607 : goto release_cluster;
6608 :
6609 40479 : offset = btrfs_alloc_from_cluster(used_block_group,
6610 : last_ptr,
6611 : num_bytes,
6612 : used_block_group->key.objectid,
6613 : &max_extent_size);
6614 40479 : if (offset) {
6615 : /* we have a block, we're done */
6616 : spin_unlock(&last_ptr->refill_lock);
6617 40477 : trace_btrfs_reserve_extent_cluster(root,
6618 : used_block_group,
6619 : search_start, num_bytes);
6620 40477 : if (used_block_group != block_group) {
6621 : btrfs_release_block_group(block_group,
6622 : delalloc);
6623 : block_group = used_block_group;
6624 : }
6625 : goto checks;
6626 : }
6627 :
6628 2 : WARN_ON(last_ptr->block_group != used_block_group);
6629 : release_cluster:
6630 : /* If we are on LOOP_NO_EMPTY_SIZE, we can't
6631 : * set up a new clusters, so lets just skip it
6632 : * and let the allocator find whatever block
6633 : * it can find. If we reach this point, we
6634 : * will have tried the cluster allocator
6635 : * plenty of times and not have found
6636 : * anything, so we are likely way too
6637 : * fragmented for the clustering stuff to find
6638 : * anything.
6639 : *
6640 : * However, if the cluster is taken from the
6641 : * current block group, release the cluster
6642 : * first, so that we stand a better chance of
6643 : * succeeding in the unclustered
6644 : * allocation. */
6645 58 : if (loop >= LOOP_NO_EMPTY_SIZE &&
6646 29 : used_block_group != block_group) {
6647 : spin_unlock(&last_ptr->refill_lock);
6648 : btrfs_release_block_group(used_block_group,
6649 : delalloc);
6650 : goto unclustered_alloc;
6651 : }
6652 :
6653 : /*
6654 : * this cluster didn't work out, free it and
6655 : * start over
6656 : */
6657 29 : btrfs_return_cluster_to_free_space(NULL, last_ptr);
6658 :
6659 29 : if (used_block_group != block_group)
6660 : btrfs_release_block_group(used_block_group,
6661 : delalloc);
6662 : refill_cluster:
6663 394 : if (loop >= LOOP_NO_EMPTY_SIZE) {
6664 : spin_unlock(&last_ptr->refill_lock);
6665 : goto unclustered_alloc;
6666 : }
6667 :
6668 394 : aligned_cluster = max_t(unsigned long,
6669 : empty_cluster + empty_size,
6670 : block_group->full_stripe_len);
6671 :
6672 : /* allocate a cluster in this block group */
6673 394 : ret = btrfs_find_space_cluster(root, block_group,
6674 : last_ptr, search_start,
6675 : num_bytes,
6676 : aligned_cluster);
6677 394 : if (ret == 0) {
6678 : /*
6679 : * now pull our allocation out of this
6680 : * cluster
6681 : */
6682 217 : offset = btrfs_alloc_from_cluster(block_group,
6683 : last_ptr,
6684 : num_bytes,
6685 : search_start,
6686 : &max_extent_size);
6687 217 : if (offset) {
6688 : /* we found one, proceed */
6689 : spin_unlock(&last_ptr->refill_lock);
6690 217 : trace_btrfs_reserve_extent_cluster(root,
6691 : block_group, search_start,
6692 : num_bytes);
6693 217 : goto checks;
6694 : }
6695 177 : } else if (!cached && loop > LOOP_CACHING_NOWAIT
6696 76 : && !failed_cluster_refill) {
6697 : spin_unlock(&last_ptr->refill_lock);
6698 :
6699 : failed_cluster_refill = true;
6700 76 : wait_block_group_cache_progress(block_group,
6701 76 : num_bytes + empty_cluster + empty_size);
6702 76 : goto have_block_group;
6703 : }
6704 :
6705 : /*
6706 : * at this point we either didn't find a cluster
6707 : * or we weren't able to allocate a block from our
6708 : * cluster. Free the cluster we've been trying
6709 : * to use, and go to the next block group
6710 : */
6711 101 : btrfs_return_cluster_to_free_space(NULL, last_ptr);
6712 : spin_unlock(&last_ptr->refill_lock);
6713 : goto loop;
6714 : }
6715 :
6716 : unclustered_alloc:
6717 114135 : spin_lock(&block_group->free_space_ctl->tree_lock);
6718 228021 : if (cached &&
6719 113889 : block_group->free_space_ctl->free_space <
6720 113889 : num_bytes + empty_cluster + empty_size) {
6721 41516 : if (block_group->free_space_ctl->free_space >
6722 : max_extent_size)
6723 5019 : max_extent_size =
6724 : block_group->free_space_ctl->free_space;
6725 : spin_unlock(&block_group->free_space_ctl->tree_lock);
6726 : goto loop;
6727 : }
6728 72616 : spin_unlock(&block_group->free_space_ctl->tree_lock);
6729 :
6730 72622 : offset = btrfs_find_space_for_alloc(block_group, search_start,
6731 : num_bytes, empty_size,
6732 : &max_extent_size);
6733 : /*
6734 : * If we didn't find a chunk, and we haven't failed on this
6735 : * block group before, and this block group is in the middle of
6736 : * caching and we are ok with waiting, then go ahead and wait
6737 : * for progress to be made, and set failed_alloc to true.
6738 : *
6739 : * If failed_alloc is true then we've already waited on this
6740 : * block group once and should move on to the next block group.
6741 : */
6742 73678 : if (!offset && !failed_alloc && !cached &&
6743 1053 : loop > LOOP_CACHING_NOWAIT) {
6744 52 : wait_block_group_cache_progress(block_group,
6745 : num_bytes + empty_size);
6746 : failed_alloc = true;
6747 52 : goto have_block_group;
6748 72573 : } else if (!offset) {
6749 1001 : if (!cached)
6750 : have_caching_bg = true;
6751 : goto loop;
6752 : }
6753 : checks:
6754 : search_start = stripe_align(root, block_group,
6755 : offset, num_bytes);
6756 :
6757 : /* move on to the next group */
6758 224530 : if (search_start + num_bytes >
6759 112265 : block_group->key.objectid + block_group->key.offset) {
6760 : btrfs_add_free_space(block_group, offset, num_bytes);
6761 : goto loop;
6762 : }
6763 :
6764 112265 : if (offset < search_start)
6765 0 : btrfs_add_free_space(block_group, offset,
6766 : search_start - offset);
6767 112264 : BUG_ON(offset > search_start);
6768 :
6769 112264 : ret = btrfs_update_reserved_bytes(block_group, num_bytes,
6770 : alloc_type, delalloc);
6771 112262 : if (ret == -EAGAIN) {
6772 : btrfs_add_free_space(block_group, offset, num_bytes);
6773 : goto loop;
6774 : }
6775 :
6776 : /* we are all good, lets return */
6777 112262 : ins->objectid = search_start;
6778 112262 : ins->offset = num_bytes;
6779 :
6780 112262 : trace_btrfs_reserve_extent(orig_root, block_group,
6781 : search_start, num_bytes);
6782 : btrfs_release_block_group(block_group, delalloc);
6783 : break;
6784 : loop:
6785 : failed_cluster_refill = false;
6786 : failed_alloc = false;
6787 42986 : BUG_ON(index != get_block_group_index(block_group));
6788 : btrfs_release_block_group(block_group, delalloc);
6789 : }
6790 113460 : up_read(&space_info->groups_sem);
6791 :
6792 113460 : if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
6793 : goto search;
6794 :
6795 113459 : if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
6796 : goto search;
6797 :
6798 : /*
6799 : * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
6800 : * caching kthreads as we move along
6801 : * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
6802 : * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
6803 : * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
6804 : * again
6805 : */
6806 112434 : if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
6807 : index = 0;
6808 170 : loop++;
6809 170 : if (loop == LOOP_ALLOC_CHUNK) {
6810 : struct btrfs_trans_handle *trans;
6811 : int exist = 0;
6812 :
6813 1 : trans = current->journal_info;
6814 1 : if (trans)
6815 : exist = 1;
6816 : else
6817 1 : trans = btrfs_join_transaction(root);
6818 :
6819 1 : if (IS_ERR(trans)) {
6820 0 : ret = PTR_ERR(trans);
6821 0 : goto out;
6822 : }
6823 :
6824 1 : ret = do_chunk_alloc(trans, root, flags,
6825 : CHUNK_ALLOC_FORCE);
6826 : /*
6827 : * Do not bail out on ENOSPC since we
6828 : * can do more things.
6829 : */
6830 1 : if (ret < 0 && ret != -ENOSPC)
6831 0 : btrfs_abort_transaction(trans,
6832 : root, ret);
6833 : else
6834 : ret = 0;
6835 2 : if (!exist)
6836 1 : btrfs_end_transaction(trans, root);
6837 2 : if (ret)
6838 : goto out;
6839 : }
6840 :
6841 170 : if (loop == LOOP_NO_EMPTY_SIZE) {
6842 : empty_size = 0;
6843 : empty_cluster = 0;
6844 : }
6845 :
6846 : goto search;
6847 112264 : } else if (!ins->objectid) {
6848 : ret = -ENOSPC;
6849 112264 : } else if (ins->objectid) {
6850 : ret = 0;
6851 : }
6852 : out:
6853 112265 : if (ret == -ENOSPC)
6854 0 : ins->offset = max_extent_size;
6855 112265 : return ret;
6856 : }
6857 :
6858 0 : static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
6859 : int dump_block_groups)
6860 : {
6861 : struct btrfs_block_group_cache *cache;
6862 : int index = 0;
6863 :
6864 : spin_lock(&info->lock);
6865 0 : printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
6866 : info->flags,
6867 0 : info->total_bytes - info->bytes_used - info->bytes_pinned -
6868 0 : info->bytes_reserved - info->bytes_readonly,
6869 0 : (info->full) ? "" : "not ");
6870 0 : printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
6871 : "reserved=%llu, may_use=%llu, readonly=%llu\n",
6872 : info->total_bytes, info->bytes_used, info->bytes_pinned,
6873 : info->bytes_reserved, info->bytes_may_use,
6874 : info->bytes_readonly);
6875 : spin_unlock(&info->lock);
6876 :
6877 0 : if (!dump_block_groups)
6878 0 : return;
6879 :
6880 0 : down_read(&info->groups_sem);
6881 : again:
6882 0 : list_for_each_entry(cache, &info->block_groups[index], list) {
6883 : spin_lock(&cache->lock);
6884 0 : printk(KERN_INFO "BTRFS: "
6885 : "block group %llu has %llu bytes, "
6886 : "%llu used %llu pinned %llu reserved %s\n",
6887 : cache->key.objectid, cache->key.offset,
6888 : btrfs_block_group_used(&cache->item), cache->pinned,
6889 0 : cache->reserved, cache->ro ? "[readonly]" : "");
6890 0 : btrfs_dump_free_space(cache, bytes);
6891 : spin_unlock(&cache->lock);
6892 : }
6893 0 : if (++index < BTRFS_NR_RAID_TYPES)
6894 : goto again;
6895 0 : up_read(&info->groups_sem);
6896 : }
6897 :
6898 112259 : int btrfs_reserve_extent(struct btrfs_root *root,
6899 : u64 num_bytes, u64 min_alloc_size,
6900 : u64 empty_size, u64 hint_byte,
6901 : struct btrfs_key *ins, int is_data, int delalloc)
6902 : {
6903 : bool final_tried = false;
6904 : u64 flags;
6905 : int ret;
6906 :
6907 112259 : flags = btrfs_get_alloc_profile(root, is_data);
6908 : again:
6909 112262 : WARN_ON(num_bytes < root->sectorsize);
6910 112262 : ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
6911 : flags, delalloc);
6912 :
6913 112264 : if (ret == -ENOSPC) {
6914 0 : if (!final_tried && ins->offset) {
6915 0 : num_bytes = min(num_bytes >> 1, ins->offset);
6916 0 : num_bytes = round_down(num_bytes, root->sectorsize);
6917 0 : num_bytes = max(num_bytes, min_alloc_size);
6918 0 : if (num_bytes == min_alloc_size)
6919 : final_tried = true;
6920 : goto again;
6921 0 : } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6922 : struct btrfs_space_info *sinfo;
6923 :
6924 : sinfo = __find_space_info(root->fs_info, flags);
6925 0 : btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
6926 : flags, num_bytes);
6927 0 : if (sinfo)
6928 0 : dump_space_info(sinfo, num_bytes, 1);
6929 : }
6930 : }
6931 :
6932 112264 : return ret;
6933 : }
6934 :
6935 505 : static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6936 : u64 start, u64 len,
6937 : int pin, int delalloc)
6938 : {
6939 0 : struct btrfs_block_group_cache *cache;
6940 : int ret = 0;
6941 :
6942 505 : cache = btrfs_lookup_block_group(root->fs_info, start);
6943 505 : if (!cache) {
6944 0 : btrfs_err(root->fs_info, "Unable to find block group for %llu",
6945 : start);
6946 0 : return -ENOSPC;
6947 : }
6948 :
6949 505 : if (btrfs_test_opt(root, DISCARD))
6950 0 : ret = btrfs_discard_extent(root, start, len, NULL);
6951 :
6952 505 : if (pin)
6953 505 : pin_down_extent(root, cache, start, len, 1);
6954 : else {
6955 : btrfs_add_free_space(cache, start, len);
6956 0 : btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
6957 : }
6958 505 : btrfs_put_block_group(cache);
6959 :
6960 505 : trace_btrfs_reserved_extent_free(root, start, len);
6961 :
6962 505 : return ret;
6963 : }
6964 :
6965 0 : int btrfs_free_reserved_extent(struct btrfs_root *root,
6966 : u64 start, u64 len, int delalloc)
6967 : {
6968 0 : return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
6969 : }
6970 :
6971 505 : int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6972 : u64 start, u64 len)
6973 : {
6974 505 : return __btrfs_free_reserved_extent(root, start, len, 1, 0);
6975 : }
6976 :
6977 52711 : static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6978 : struct btrfs_root *root,
6979 : u64 parent, u64 root_objectid,
6980 : u64 flags, u64 owner, u64 offset,
6981 : struct btrfs_key *ins, int ref_mod)
6982 : {
6983 : int ret;
6984 52711 : struct btrfs_fs_info *fs_info = root->fs_info;
6985 : struct btrfs_extent_item *extent_item;
6986 : struct btrfs_extent_inline_ref *iref;
6987 : struct btrfs_path *path;
6988 : struct extent_buffer *leaf;
6989 : int type;
6990 : u32 size;
6991 :
6992 52711 : if (parent > 0)
6993 : type = BTRFS_SHARED_DATA_REF_KEY;
6994 : else
6995 : type = BTRFS_EXTENT_DATA_REF_KEY;
6996 :
6997 52711 : size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
6998 :
6999 52711 : path = btrfs_alloc_path();
7000 52711 : if (!path)
7001 : return -ENOMEM;
7002 :
7003 52711 : path->leave_spinning = 1;
7004 52711 : ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7005 : ins, size);
7006 52711 : if (ret) {
7007 0 : btrfs_free_path(path);
7008 0 : return ret;
7009 : }
7010 :
7011 52711 : leaf = path->nodes[0];
7012 105422 : extent_item = btrfs_item_ptr(leaf, path->slots[0],
7013 : struct btrfs_extent_item);
7014 52711 : btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7015 52711 : btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7016 52711 : btrfs_set_extent_flags(leaf, extent_item,
7017 : flags | BTRFS_EXTENT_FLAG_DATA);
7018 :
7019 52711 : iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7020 52711 : btrfs_set_extent_inline_ref_type(leaf, iref, type);
7021 52711 : if (parent > 0) {
7022 : struct btrfs_shared_data_ref *ref;
7023 0 : ref = (struct btrfs_shared_data_ref *)(iref + 1);
7024 : btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7025 0 : btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7026 : } else {
7027 : struct btrfs_extent_data_ref *ref;
7028 52711 : ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7029 : btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7030 : btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7031 : btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7032 52711 : btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7033 : }
7034 :
7035 52711 : btrfs_mark_buffer_dirty(path->nodes[0]);
7036 52711 : btrfs_free_path(path);
7037 :
7038 : /* Always set parent to 0 here since its exclusive anyway. */
7039 52710 : ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7040 : ins->objectid, ins->offset,
7041 : BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7042 52710 : if (ret)
7043 : return ret;
7044 :
7045 52710 : ret = update_block_group(root, ins->objectid, ins->offset, 1);
7046 52711 : if (ret) { /* -ENOENT, logic error */
7047 0 : btrfs_err(fs_info, "update block group failed for %llu %llu",
7048 : ins->objectid, ins->offset);
7049 0 : BUG();
7050 : }
7051 52711 : trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7052 52711 : return ret;
7053 : }
7054 :
7055 53373 : static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7056 : struct btrfs_root *root,
7057 : u64 parent, u64 root_objectid,
7058 : u64 flags, struct btrfs_disk_key *key,
7059 : int level, struct btrfs_key *ins,
7060 : int no_quota)
7061 : {
7062 : int ret;
7063 53373 : struct btrfs_fs_info *fs_info = root->fs_info;
7064 : struct btrfs_extent_item *extent_item;
7065 : struct btrfs_tree_block_info *block_info;
7066 : struct btrfs_extent_inline_ref *iref;
7067 : struct btrfs_path *path;
7068 : struct extent_buffer *leaf;
7069 : u32 size = sizeof(*extent_item) + sizeof(*iref);
7070 53373 : u64 num_bytes = ins->offset;
7071 53373 : bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7072 : SKINNY_METADATA);
7073 :
7074 53373 : if (!skinny_metadata)
7075 : size += sizeof(*block_info);
7076 :
7077 53373 : path = btrfs_alloc_path();
7078 53373 : if (!path) {
7079 0 : btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7080 0 : root->leafsize);
7081 0 : return -ENOMEM;
7082 : }
7083 :
7084 53373 : path->leave_spinning = 1;
7085 53373 : ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7086 : ins, size);
7087 53374 : if (ret) {
7088 0 : btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7089 0 : root->leafsize);
7090 0 : btrfs_free_path(path);
7091 0 : return ret;
7092 : }
7093 :
7094 53374 : leaf = path->nodes[0];
7095 106748 : extent_item = btrfs_item_ptr(leaf, path->slots[0],
7096 : struct btrfs_extent_item);
7097 : btrfs_set_extent_refs(leaf, extent_item, 1);
7098 53373 : btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7099 53373 : btrfs_set_extent_flags(leaf, extent_item,
7100 : flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7101 :
7102 53373 : if (skinny_metadata) {
7103 0 : iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7104 0 : num_bytes = root->leafsize;
7105 : } else {
7106 53373 : block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7107 : btrfs_set_tree_block_key(leaf, block_info, key);
7108 53373 : btrfs_set_tree_block_level(leaf, block_info, level);
7109 53373 : iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7110 : }
7111 :
7112 53373 : if (parent > 0) {
7113 457 : BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7114 : btrfs_set_extent_inline_ref_type(leaf, iref,
7115 : BTRFS_SHARED_BLOCK_REF_KEY);
7116 : btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7117 : } else {
7118 : btrfs_set_extent_inline_ref_type(leaf, iref,
7119 : BTRFS_TREE_BLOCK_REF_KEY);
7120 : btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7121 : }
7122 :
7123 53373 : btrfs_mark_buffer_dirty(leaf);
7124 53374 : btrfs_free_path(path);
7125 :
7126 53374 : if (!no_quota) {
7127 53374 : ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7128 : ins->objectid, num_bytes,
7129 : BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7130 53374 : if (ret)
7131 : return ret;
7132 : }
7133 :
7134 53374 : ret = update_block_group(root, ins->objectid, root->leafsize, 1);
7135 53373 : if (ret) { /* -ENOENT, logic error */
7136 0 : btrfs_err(fs_info, "update block group failed for %llu %llu",
7137 : ins->objectid, ins->offset);
7138 0 : BUG();
7139 : }
7140 :
7141 53373 : trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->leafsize);
7142 53373 : return ret;
7143 : }
7144 :
7145 53378 : int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7146 : struct btrfs_root *root,
7147 : u64 root_objectid, u64 owner,
7148 : u64 offset, struct btrfs_key *ins)
7149 : {
7150 : int ret;
7151 :
7152 53378 : BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7153 :
7154 53378 : ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7155 : ins->offset, 0,
7156 : root_objectid, owner, offset,
7157 : BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
7158 53380 : return ret;
7159 : }
7160 :
7161 : /*
7162 : * this is used by the tree logging recovery code. It records that
7163 : * an extent has been allocated and makes sure to clear the free
7164 : * space cache bits as well
7165 : */
7166 0 : int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7167 : struct btrfs_root *root,
7168 : u64 root_objectid, u64 owner, u64 offset,
7169 : struct btrfs_key *ins)
7170 : {
7171 : int ret;
7172 : struct btrfs_block_group_cache *block_group;
7173 :
7174 : /*
7175 : * Mixed block groups will exclude before processing the log so we only
7176 : * need to do the exlude dance if this fs isn't mixed.
7177 : */
7178 0 : if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7179 0 : ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7180 0 : if (ret)
7181 : return ret;
7182 : }
7183 :
7184 0 : block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7185 0 : if (!block_group)
7186 : return -EINVAL;
7187 :
7188 0 : ret = btrfs_update_reserved_bytes(block_group, ins->offset,
7189 : RESERVE_ALLOC_NO_ACCOUNT, 0);
7190 0 : BUG_ON(ret); /* logic error */
7191 0 : ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7192 : 0, owner, offset, ins, 1);
7193 0 : btrfs_put_block_group(block_group);
7194 0 : return ret;
7195 : }
7196 :
7197 : static struct extent_buffer *
7198 58886 : btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7199 : u64 bytenr, u32 blocksize, int level)
7200 : {
7201 58885 : struct extent_buffer *buf;
7202 :
7203 58886 : buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
7204 58885 : if (!buf)
7205 : return ERR_PTR(-ENOMEM);
7206 58885 : btrfs_set_header_generation(buf, trans->transid);
7207 : btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
7208 58885 : btrfs_tree_lock(buf);
7209 58886 : clean_tree_block(trans, root, buf);
7210 : clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
7211 :
7212 : btrfs_set_lock_blocking(buf);
7213 58885 : btrfs_set_buffer_uptodate(buf);
7214 :
7215 58885 : if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
7216 : /*
7217 : * we allow two log transactions at a time, use different
7218 : * EXENT bit to differentiate dirty pages.
7219 : */
7220 3108 : if (root->log_transid % 2 == 0)
7221 1724 : set_extent_dirty(&root->dirty_log_pages, buf->start,
7222 1724 : buf->start + buf->len - 1, GFP_NOFS);
7223 : else
7224 1384 : set_extent_new(&root->dirty_log_pages, buf->start,
7225 1384 : buf->start + buf->len - 1, GFP_NOFS);
7226 : } else {
7227 55777 : set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
7228 55777 : buf->start + buf->len - 1, GFP_NOFS);
7229 : }
7230 58886 : trans->blocks_used++;
7231 : /* this returns a buffer locked for blocking */
7232 : return buf;
7233 : }
7234 :
7235 : static struct btrfs_block_rsv *
7236 58884 : use_block_rsv(struct btrfs_trans_handle *trans,
7237 : struct btrfs_root *root, u32 blocksize)
7238 : {
7239 : struct btrfs_block_rsv *block_rsv;
7240 58884 : struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
7241 : int ret;
7242 : bool global_updated = false;
7243 :
7244 58884 : block_rsv = get_block_rsv(trans, root);
7245 :
7246 58884 : if (unlikely(block_rsv->size == 0))
7247 : goto try_reserve;
7248 : again:
7249 55395 : ret = block_rsv_use_bytes(block_rsv, blocksize);
7250 55397 : if (!ret)
7251 : return block_rsv;
7252 :
7253 13 : if (block_rsv->failfast)
7254 0 : return ERR_PTR(ret);
7255 :
7256 13 : if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7257 : global_updated = true;
7258 0 : update_global_block_rsv(root->fs_info);
7259 0 : goto again;
7260 : }
7261 :
7262 13 : if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7263 : static DEFINE_RATELIMIT_STATE(_rs,
7264 : DEFAULT_RATELIMIT_INTERVAL * 10,
7265 : /*DEFAULT_RATELIMIT_BURST*/ 1);
7266 0 : if (__ratelimit(&_rs))
7267 0 : WARN(1, KERN_DEBUG
7268 : "BTRFS: block rsv returned %d\n", ret);
7269 : }
7270 : try_reserve:
7271 3502 : ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7272 : BTRFS_RESERVE_NO_FLUSH);
7273 3502 : if (!ret)
7274 : return block_rsv;
7275 : /*
7276 : * If we couldn't reserve metadata bytes try and use some from
7277 : * the global reserve if its space type is the same as the global
7278 : * reservation.
7279 : */
7280 0 : if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7281 0 : block_rsv->space_info == global_rsv->space_info) {
7282 0 : ret = block_rsv_use_bytes(global_rsv, blocksize);
7283 0 : if (!ret)
7284 : return global_rsv;
7285 : }
7286 0 : return ERR_PTR(ret);
7287 : }
7288 :
7289 0 : static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7290 : struct btrfs_block_rsv *block_rsv, u32 blocksize)
7291 : {
7292 0 : block_rsv_add_bytes(block_rsv, blocksize, 0);
7293 0 : block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
7294 0 : }
7295 :
7296 : /*
7297 : * finds a free extent and does all the dirty work required for allocation
7298 : * returns the key for the extent through ins, and a tree buffer for
7299 : * the first block of the extent through buf.
7300 : *
7301 : * returns the tree buffer or NULL.
7302 : */
7303 58884 : struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
7304 : struct btrfs_root *root, u32 blocksize,
7305 : u64 parent, u64 root_objectid,
7306 : struct btrfs_disk_key *key, int level,
7307 : u64 hint, u64 empty_size)
7308 : {
7309 : struct btrfs_key ins;
7310 : struct btrfs_block_rsv *block_rsv;
7311 : struct extent_buffer *buf;
7312 : u64 flags = 0;
7313 : int ret;
7314 58884 : bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7315 : SKINNY_METADATA);
7316 :
7317 : #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
7318 : if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state))) {
7319 : buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
7320 : blocksize, level);
7321 : if (!IS_ERR(buf))
7322 : root->alloc_bytenr += blocksize;
7323 : return buf;
7324 : }
7325 : #endif
7326 58884 : block_rsv = use_block_rsv(trans, root, blocksize);
7327 58886 : if (IS_ERR(block_rsv))
7328 : return ERR_CAST(block_rsv);
7329 :
7330 58886 : ret = btrfs_reserve_extent(root, blocksize, blocksize,
7331 : empty_size, hint, &ins, 0, 0);
7332 58886 : if (ret) {
7333 0 : unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7334 0 : return ERR_PTR(ret);
7335 : }
7336 :
7337 58886 : buf = btrfs_init_new_buffer(trans, root, ins.objectid,
7338 : blocksize, level);
7339 58886 : BUG_ON(IS_ERR(buf)); /* -ENOMEM */
7340 :
7341 58886 : if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7342 457 : if (parent == 0)
7343 441 : parent = ins.objectid;
7344 : flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7345 : } else
7346 58429 : BUG_ON(parent > 0);
7347 :
7348 58886 : if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7349 : struct btrfs_delayed_extent_op *extent_op;
7350 : extent_op = btrfs_alloc_delayed_extent_op();
7351 55778 : BUG_ON(!extent_op); /* -ENOMEM */
7352 55778 : if (key)
7353 55624 : memcpy(&extent_op->key, key, sizeof(extent_op->key));
7354 : else
7355 154 : memset(&extent_op->key, 0, sizeof(extent_op->key));
7356 55778 : extent_op->flags_to_set = flags;
7357 55778 : if (skinny_metadata)
7358 0 : extent_op->update_key = 0;
7359 : else
7360 55778 : extent_op->update_key = 1;
7361 55778 : extent_op->update_flags = 1;
7362 55778 : extent_op->is_data = 0;
7363 55778 : extent_op->level = level;
7364 :
7365 55778 : ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7366 : ins.objectid,
7367 : ins.offset, parent, root_objectid,
7368 : level, BTRFS_ADD_DELAYED_EXTENT,
7369 : extent_op, 0);
7370 55778 : BUG_ON(ret); /* -ENOMEM */
7371 : }
7372 58886 : return buf;
7373 : }
7374 :
7375 : struct walk_control {
7376 : u64 refs[BTRFS_MAX_LEVEL];
7377 : u64 flags[BTRFS_MAX_LEVEL];
7378 : struct btrfs_key update_progress;
7379 : int stage;
7380 : int level;
7381 : int shared_level;
7382 : int update_ref;
7383 : int keep_locks;
7384 : int reada_slot;
7385 : int reada_count;
7386 : int for_reloc;
7387 : };
7388 :
7389 : #define DROP_REFERENCE 1
7390 : #define UPDATE_BACKREF 2
7391 :
7392 0 : static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7393 0 : struct btrfs_root *root,
7394 : struct walk_control *wc,
7395 : struct btrfs_path *path)
7396 : {
7397 : u64 bytenr;
7398 : u64 generation;
7399 : u64 refs;
7400 : u64 flags;
7401 : u32 nritems;
7402 : u32 blocksize;
7403 : struct btrfs_key key;
7404 0 : struct extent_buffer *eb;
7405 : int ret;
7406 : int slot;
7407 : int nread = 0;
7408 :
7409 0 : if (path->slots[wc->level] < wc->reada_slot) {
7410 0 : wc->reada_count = wc->reada_count * 2 / 3;
7411 0 : wc->reada_count = max(wc->reada_count, 2);
7412 : } else {
7413 0 : wc->reada_count = wc->reada_count * 3 / 2;
7414 0 : wc->reada_count = min_t(int, wc->reada_count,
7415 : BTRFS_NODEPTRS_PER_BLOCK(root));
7416 : }
7417 :
7418 0 : eb = path->nodes[wc->level];
7419 : nritems = btrfs_header_nritems(eb);
7420 : blocksize = btrfs_level_size(root, wc->level - 1);
7421 :
7422 0 : for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7423 0 : if (nread >= wc->reada_count)
7424 : break;
7425 :
7426 0 : cond_resched();
7427 : bytenr = btrfs_node_blockptr(eb, slot);
7428 : generation = btrfs_node_ptr_generation(eb, slot);
7429 :
7430 0 : if (slot == path->slots[wc->level])
7431 : goto reada;
7432 :
7433 0 : if (wc->stage == UPDATE_BACKREF &&
7434 0 : generation <= root->root_key.offset)
7435 0 : continue;
7436 :
7437 : /* We don't lock the tree block, it's OK to be racy here */
7438 0 : ret = btrfs_lookup_extent_info(trans, root, bytenr,
7439 0 : wc->level - 1, 1, &refs,
7440 : &flags);
7441 : /* We don't care about errors in readahead. */
7442 0 : if (ret < 0)
7443 0 : continue;
7444 0 : BUG_ON(refs == 0);
7445 :
7446 0 : if (wc->stage == DROP_REFERENCE) {
7447 0 : if (refs == 1)
7448 : goto reada;
7449 :
7450 0 : if (wc->level == 1 &&
7451 0 : (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7452 0 : continue;
7453 0 : if (!wc->update_ref ||
7454 0 : generation <= root->root_key.offset)
7455 0 : continue;
7456 : btrfs_node_key_to_cpu(eb, &key, slot);
7457 0 : ret = btrfs_comp_cpu_keys(&key,
7458 : &wc->update_progress);
7459 0 : if (ret < 0)
7460 0 : continue;
7461 : } else {
7462 0 : if (wc->level == 1 &&
7463 0 : (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7464 0 : continue;
7465 : }
7466 : reada:
7467 0 : ret = readahead_tree_block(root, bytenr, blocksize,
7468 : generation);
7469 0 : if (ret)
7470 : break;
7471 0 : nread++;
7472 : }
7473 0 : wc->reada_slot = slot;
7474 0 : }
7475 :
7476 464 : static int account_leaf_items(struct btrfs_trans_handle *trans,
7477 : struct btrfs_root *root,
7478 464 : struct extent_buffer *eb)
7479 : {
7480 464 : int nr = btrfs_header_nritems(eb);
7481 : int i, extent_type, ret;
7482 : struct btrfs_key key;
7483 : struct btrfs_file_extent_item *fi;
7484 : u64 bytenr, num_bytes;
7485 :
7486 4143 : for (i = 0; i < nr; i++) {
7487 4143 : btrfs_item_key_to_cpu(eb, &key, i);
7488 :
7489 4143 : if (key.type != BTRFS_EXTENT_DATA_KEY)
7490 1982 : continue;
7491 :
7492 2161 : fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
7493 : /* filter out non qgroup-accountable extents */
7494 : extent_type = btrfs_file_extent_type(eb, fi);
7495 :
7496 2161 : if (extent_type == BTRFS_FILE_EXTENT_INLINE)
7497 0 : continue;
7498 :
7499 : bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
7500 2161 : if (!bytenr)
7501 104 : continue;
7502 :
7503 : num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
7504 :
7505 2057 : ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7506 : root->objectid,
7507 : bytenr, num_bytes,
7508 : BTRFS_QGROUP_OPER_SUB_SUBTREE, 0);
7509 2057 : if (ret)
7510 : return ret;
7511 : }
7512 : return 0;
7513 : }
7514 :
7515 : /*
7516 : * Walk up the tree from the bottom, freeing leaves and any interior
7517 : * nodes which have had all slots visited. If a node (leaf or
7518 : * interior) is freed, the node above it will have it's slot
7519 : * incremented. The root node will never be freed.
7520 : *
7521 : * At the end of this function, we should have a path which has all
7522 : * slots incremented to the next position for a search. If we need to
7523 : * read a new node it will be NULL and the node above it will have the
7524 : * correct slot selected for a later read.
7525 : *
7526 : * If we increment the root nodes slot counter past the number of
7527 : * elements, 1 is returned to signal completion of the search.
7528 : */
7529 0 : static int adjust_slots_upwards(struct btrfs_root *root,
7530 : struct btrfs_path *path, int root_level)
7531 : {
7532 : int level = 0;
7533 : int nr, slot;
7534 0 : struct extent_buffer *eb;
7535 :
7536 0 : if (root_level == 0)
7537 : return 1;
7538 :
7539 0 : while (level <= root_level) {
7540 0 : eb = path->nodes[level];
7541 0 : nr = btrfs_header_nritems(eb);
7542 0 : path->slots[level]++;
7543 : slot = path->slots[level];
7544 0 : if (slot >= nr || level == 0) {
7545 : /*
7546 : * Don't free the root - we will detect this
7547 : * condition after our loop and return a
7548 : * positive value for caller to stop walking the tree.
7549 : */
7550 0 : if (level != root_level) {
7551 0 : btrfs_tree_unlock_rw(eb, path->locks[level]);
7552 0 : path->locks[level] = 0;
7553 :
7554 0 : free_extent_buffer(eb);
7555 0 : path->nodes[level] = NULL;
7556 0 : path->slots[level] = 0;
7557 : }
7558 : } else {
7559 : /*
7560 : * We have a valid slot to walk back down
7561 : * from. Stop here so caller can process these
7562 : * new nodes.
7563 : */
7564 : break;
7565 : }
7566 :
7567 0 : level++;
7568 : }
7569 :
7570 0 : eb = path->nodes[root_level];
7571 0 : if (path->slots[root_level] >= btrfs_header_nritems(eb))
7572 : return 1;
7573 :
7574 : return 0;
7575 : }
7576 :
7577 : /*
7578 : * root_eb is the subtree root and is locked before this function is called.
7579 : */
7580 2 : static int account_shared_subtree(struct btrfs_trans_handle *trans,
7581 : struct btrfs_root *root,
7582 : struct extent_buffer *root_eb,
7583 : u64 root_gen,
7584 : int root_level)
7585 : {
7586 : int ret = 0;
7587 : int level;
7588 : struct extent_buffer *eb = root_eb;
7589 : struct btrfs_path *path = NULL;
7590 :
7591 2 : BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
7592 2 : BUG_ON(root_eb == NULL);
7593 :
7594 2 : if (!root->fs_info->quota_enabled)
7595 : return 0;
7596 :
7597 0 : if (!extent_buffer_uptodate(root_eb)) {
7598 0 : ret = btrfs_read_buffer(root_eb, root_gen);
7599 0 : if (ret)
7600 : goto out;
7601 : }
7602 :
7603 0 : if (root_level == 0) {
7604 0 : ret = account_leaf_items(trans, root, root_eb);
7605 0 : goto out;
7606 : }
7607 :
7608 0 : path = btrfs_alloc_path();
7609 0 : if (!path)
7610 : return -ENOMEM;
7611 :
7612 : /*
7613 : * Walk down the tree. Missing extent blocks are filled in as
7614 : * we go. Metadata is accounted every time we read a new
7615 : * extent block.
7616 : *
7617 : * When we reach a leaf, we account for file extent items in it,
7618 : * walk back up the tree (adjusting slot pointers as we go)
7619 : * and restart the search process.
7620 : */
7621 : extent_buffer_get(root_eb); /* For path */
7622 0 : path->nodes[root_level] = root_eb;
7623 0 : path->slots[root_level] = 0;
7624 0 : path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
7625 : walk_down:
7626 : level = root_level;
7627 0 : while (level >= 0) {
7628 0 : if (path->nodes[level] == NULL) {
7629 0 : int child_bsize = root->nodesize;
7630 : int parent_slot;
7631 : u64 child_gen;
7632 : u64 child_bytenr;
7633 :
7634 : /* We need to get child blockptr/gen from
7635 : * parent before we can read it. */
7636 0 : eb = path->nodes[level + 1];
7637 0 : parent_slot = path->slots[level + 1];
7638 : child_bytenr = btrfs_node_blockptr(eb, parent_slot);
7639 : child_gen = btrfs_node_ptr_generation(eb, parent_slot);
7640 :
7641 0 : eb = read_tree_block(root, child_bytenr, child_bsize,
7642 : child_gen);
7643 0 : if (!eb || !extent_buffer_uptodate(eb)) {
7644 : ret = -EIO;
7645 : goto out;
7646 : }
7647 :
7648 0 : path->nodes[level] = eb;
7649 0 : path->slots[level] = 0;
7650 :
7651 0 : btrfs_tree_read_lock(eb);
7652 0 : btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
7653 0 : path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
7654 :
7655 0 : ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7656 : root->objectid,
7657 : child_bytenr,
7658 : child_bsize,
7659 : BTRFS_QGROUP_OPER_SUB_SUBTREE,
7660 : 0);
7661 0 : if (ret)
7662 : goto out;
7663 :
7664 : }
7665 :
7666 0 : if (level == 0) {
7667 0 : ret = account_leaf_items(trans, root, path->nodes[level]);
7668 0 : if (ret)
7669 : goto out;
7670 :
7671 : /* Nonzero return here means we completed our search */
7672 0 : ret = adjust_slots_upwards(root, path, root_level);
7673 0 : if (ret)
7674 : break;
7675 :
7676 : /* Restart search with new slots */
7677 : goto walk_down;
7678 : }
7679 :
7680 0 : level--;
7681 : }
7682 :
7683 : ret = 0;
7684 : out:
7685 0 : btrfs_free_path(path);
7686 :
7687 0 : return ret;
7688 : }
7689 :
7690 : /*
7691 : * helper to process tree block while walking down the tree.
7692 : *
7693 : * when wc->stage == UPDATE_BACKREF, this function updates
7694 : * back refs for pointers in the block.
7695 : *
7696 : * NOTE: return value 1 means we should stop walking down.
7697 : */
7698 482 : static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
7699 : struct btrfs_root *root,
7700 : struct btrfs_path *path,
7701 : struct walk_control *wc, int lookup_info)
7702 : {
7703 482 : int level = wc->level;
7704 482 : struct extent_buffer *eb = path->nodes[level];
7705 : u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7706 : int ret;
7707 :
7708 482 : if (wc->stage == UPDATE_BACKREF &&
7709 0 : btrfs_header_owner(eb) != root->root_key.objectid)
7710 : return 1;
7711 :
7712 : /*
7713 : * when reference count of tree block is 1, it won't increase
7714 : * again. once full backref flag is set, we never clear it.
7715 : */
7716 482 : if (lookup_info &&
7717 466 : ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7718 0 : (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
7719 450 : BUG_ON(!path->locks[level]);
7720 450 : ret = btrfs_lookup_extent_info(trans, root,
7721 : eb->start, level, 1,
7722 : &wc->refs[level],
7723 : &wc->flags[level]);
7724 450 : BUG_ON(ret == -ENOMEM);
7725 450 : if (ret)
7726 : return ret;
7727 450 : BUG_ON(wc->refs[level] == 0);
7728 : }
7729 :
7730 482 : if (wc->stage == DROP_REFERENCE) {
7731 482 : if (wc->refs[level] > 1)
7732 : return 1;
7733 :
7734 482 : if (path->locks[level] && !wc->keep_locks) {
7735 466 : btrfs_tree_unlock_rw(eb, path->locks[level]);
7736 466 : path->locks[level] = 0;
7737 : }
7738 : return 0;
7739 : }
7740 :
7741 : /* wc->stage == UPDATE_BACKREF */
7742 0 : if (!(wc->flags[level] & flag)) {
7743 0 : BUG_ON(!path->locks[level]);
7744 : ret = btrfs_inc_ref(trans, root, eb, 1);
7745 0 : BUG_ON(ret); /* -ENOMEM */
7746 : ret = btrfs_dec_ref(trans, root, eb, 0);
7747 0 : BUG_ON(ret); /* -ENOMEM */
7748 0 : ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
7749 0 : eb->len, flag,
7750 : btrfs_header_level(eb), 0);
7751 0 : BUG_ON(ret); /* -ENOMEM */
7752 0 : wc->flags[level] |= flag;
7753 : }
7754 :
7755 : /*
7756 : * the block is shared by multiple trees, so it's not good to
7757 : * keep the tree lock
7758 : */
7759 0 : if (path->locks[level] && level > 0) {
7760 0 : btrfs_tree_unlock_rw(eb, path->locks[level]);
7761 0 : path->locks[level] = 0;
7762 : }
7763 : return 0;
7764 : }
7765 :
7766 : /*
7767 : * helper to process tree block pointer.
7768 : *
7769 : * when wc->stage == DROP_REFERENCE, this function checks
7770 : * reference count of the block pointed to. if the block
7771 : * is shared and we need update back refs for the subtree
7772 : * rooted at the block, this function changes wc->stage to
7773 : * UPDATE_BACKREF. if the block is shared and there is no
7774 : * need to update back, this function drops the reference
7775 : * to the block.
7776 : *
7777 : * NOTE: return value 1 means we should stop walking down.
7778 : */
7779 18 : static noinline int do_walk_down(struct btrfs_trans_handle *trans,
7780 18 : struct btrfs_root *root,
7781 : struct btrfs_path *path,
7782 : struct walk_control *wc, int *lookup_info)
7783 : {
7784 : u64 bytenr;
7785 : u64 generation;
7786 : u64 parent;
7787 : u32 blocksize;
7788 : struct btrfs_key key;
7789 16 : struct extent_buffer *next;
7790 18 : int level = wc->level;
7791 : int reada = 0;
7792 : int ret = 0;
7793 : bool need_account = false;
7794 :
7795 18 : generation = btrfs_node_ptr_generation(path->nodes[level],
7796 : path->slots[level]);
7797 : /*
7798 : * if the lower level block was created before the snapshot
7799 : * was created, we know there is no need to update back refs
7800 : * for the subtree
7801 : */
7802 18 : if (wc->stage == UPDATE_BACKREF &&
7803 0 : generation <= root->root_key.offset) {
7804 0 : *lookup_info = 1;
7805 0 : return 1;
7806 : }
7807 :
7808 18 : bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
7809 : blocksize = btrfs_level_size(root, level - 1);
7810 :
7811 18 : next = btrfs_find_tree_block(root, bytenr, blocksize);
7812 18 : if (!next) {
7813 16 : next = btrfs_find_create_tree_block(root, bytenr, blocksize);
7814 16 : if (!next)
7815 : return -ENOMEM;
7816 : btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
7817 : level - 1);
7818 : reada = 1;
7819 : }
7820 18 : btrfs_tree_lock(next);
7821 : btrfs_set_lock_blocking(next);
7822 :
7823 18 : ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
7824 : &wc->refs[level - 1],
7825 18 : &wc->flags[level - 1]);
7826 18 : if (ret < 0) {
7827 0 : btrfs_tree_unlock(next);
7828 0 : return ret;
7829 : }
7830 :
7831 18 : if (unlikely(wc->refs[level - 1] == 0)) {
7832 0 : btrfs_err(root->fs_info, "Missing references.");
7833 0 : BUG();
7834 : }
7835 18 : *lookup_info = 0;
7836 :
7837 18 : if (wc->stage == DROP_REFERENCE) {
7838 18 : if (wc->refs[level - 1] > 1) {
7839 : need_account = true;
7840 4 : if (level == 1 &&
7841 2 : (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7842 : goto skip;
7843 :
7844 0 : if (!wc->update_ref ||
7845 0 : generation <= root->root_key.offset)
7846 : goto skip;
7847 :
7848 0 : btrfs_node_key_to_cpu(path->nodes[level], &key,
7849 : path->slots[level]);
7850 0 : ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
7851 0 : if (ret < 0)
7852 : goto skip;
7853 :
7854 0 : wc->stage = UPDATE_BACKREF;
7855 0 : wc->shared_level = level - 1;
7856 : }
7857 : } else {
7858 0 : if (level == 1 &&
7859 0 : (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7860 : goto skip;
7861 : }
7862 :
7863 16 : if (!btrfs_buffer_uptodate(next, generation, 0)) {
7864 0 : btrfs_tree_unlock(next);
7865 0 : free_extent_buffer(next);
7866 : next = NULL;
7867 0 : *lookup_info = 1;
7868 : }
7869 :
7870 16 : if (!next) {
7871 0 : if (reada && level == 1)
7872 0 : reada_walk_down(trans, root, wc, path);
7873 0 : next = read_tree_block(root, bytenr, blocksize, generation);
7874 0 : if (!next || !extent_buffer_uptodate(next)) {
7875 0 : free_extent_buffer(next);
7876 0 : return -EIO;
7877 : }
7878 0 : btrfs_tree_lock(next);
7879 : btrfs_set_lock_blocking(next);
7880 : }
7881 :
7882 : level--;
7883 16 : BUG_ON(level != btrfs_header_level(next));
7884 16 : path->nodes[level] = next;
7885 16 : path->slots[level] = 0;
7886 16 : path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7887 16 : wc->level = level;
7888 16 : if (wc->level == 1)
7889 0 : wc->reada_slot = 0;
7890 : return 0;
7891 : skip:
7892 2 : wc->refs[level - 1] = 0;
7893 2 : wc->flags[level - 1] = 0;
7894 2 : if (wc->stage == DROP_REFERENCE) {
7895 2 : if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
7896 2 : parent = path->nodes[level]->start;
7897 : } else {
7898 0 : BUG_ON(root->root_key.objectid !=
7899 : btrfs_header_owner(path->nodes[level]));
7900 : parent = 0;
7901 : }
7902 :
7903 2 : if (need_account) {
7904 2 : ret = account_shared_subtree(trans, root, next,
7905 : generation, level - 1);
7906 2 : if (ret) {
7907 0 : printk_ratelimited(KERN_ERR "BTRFS: %s Error "
7908 : "%d accounting shared subtree. Quota "
7909 : "is out of sync, rescan required.\n",
7910 : root->fs_info->sb->s_id, ret);
7911 : }
7912 : }
7913 2 : ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
7914 : root->root_key.objectid, level - 1, 0, 0);
7915 2 : BUG_ON(ret); /* -ENOMEM */
7916 : }
7917 2 : btrfs_tree_unlock(next);
7918 2 : free_extent_buffer(next);
7919 2 : *lookup_info = 1;
7920 2 : return 1;
7921 : }
7922 :
7923 : /*
7924 : * helper to process tree block while walking up the tree.
7925 : *
7926 : * when wc->stage == DROP_REFERENCE, this function drops
7927 : * reference count on the block.
7928 : *
7929 : * when wc->stage == UPDATE_BACKREF, this function changes
7930 : * wc->stage back to DROP_REFERENCE if we changed wc->stage
7931 : * to UPDATE_BACKREF previously while processing the block.
7932 : *
7933 : * NOTE: return value 1 means we should stop walking up.
7934 : */
7935 466 : static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
7936 : struct btrfs_root *root,
7937 : struct btrfs_path *path,
7938 : struct walk_control *wc)
7939 : {
7940 : int ret;
7941 466 : int level = wc->level;
7942 943 : struct extent_buffer *eb = path->nodes[level];
7943 : u64 parent = 0;
7944 :
7945 466 : if (wc->stage == UPDATE_BACKREF) {
7946 0 : BUG_ON(wc->shared_level < level);
7947 0 : if (level < wc->shared_level)
7948 : goto out;
7949 :
7950 0 : ret = find_next_key(path, level + 1, &wc->update_progress);
7951 0 : if (ret > 0)
7952 0 : wc->update_ref = 0;
7953 :
7954 0 : wc->stage = DROP_REFERENCE;
7955 0 : wc->shared_level = -1;
7956 0 : path->slots[level] = 0;
7957 :
7958 : /*
7959 : * check reference count again if the block isn't locked.
7960 : * we should start walking down the tree again if reference
7961 : * count is one.
7962 : */
7963 0 : if (!path->locks[level]) {
7964 0 : BUG_ON(level == 0);
7965 0 : btrfs_tree_lock(eb);
7966 : btrfs_set_lock_blocking(eb);
7967 0 : path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7968 :
7969 0 : ret = btrfs_lookup_extent_info(trans, root,
7970 : eb->start, level, 1,
7971 : &wc->refs[level],
7972 : &wc->flags[level]);
7973 0 : if (ret < 0) {
7974 0 : btrfs_tree_unlock_rw(eb, path->locks[level]);
7975 0 : path->locks[level] = 0;
7976 0 : return ret;
7977 : }
7978 0 : BUG_ON(wc->refs[level] == 0);
7979 0 : if (wc->refs[level] == 1) {
7980 0 : btrfs_tree_unlock_rw(eb, path->locks[level]);
7981 0 : path->locks[level] = 0;
7982 0 : return 1;
7983 : }
7984 : }
7985 : }
7986 :
7987 : /* wc->stage == DROP_REFERENCE */
7988 466 : BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
7989 :
7990 466 : if (wc->refs[level] == 1) {
7991 466 : if (level == 0) {
7992 464 : if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7993 : ret = btrfs_dec_ref(trans, root, eb, 1);
7994 : else
7995 : ret = btrfs_dec_ref(trans, root, eb, 0);
7996 464 : BUG_ON(ret); /* -ENOMEM */
7997 464 : ret = account_leaf_items(trans, root, eb);
7998 464 : if (ret) {
7999 0 : printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8000 : "%d accounting leaf items. Quota "
8001 : "is out of sync, rescan required.\n",
8002 : root->fs_info->sb->s_id, ret);
8003 : }
8004 : }
8005 : /* make block locked assertion in clean_tree_block happy */
8006 932 : if (!path->locks[level] &&
8007 466 : btrfs_header_generation(eb) == trans->transid) {
8008 2 : btrfs_tree_lock(eb);
8009 : btrfs_set_lock_blocking(eb);
8010 2 : path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8011 : }
8012 466 : clean_tree_block(trans, root, eb);
8013 : }
8014 :
8015 466 : if (eb == root->node) {
8016 450 : if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8017 439 : parent = eb->start;
8018 : else
8019 22 : BUG_ON(root->root_key.objectid !=
8020 : btrfs_header_owner(eb));
8021 : } else {
8022 16 : if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8023 16 : parent = path->nodes[level + 1]->start;
8024 : else
8025 0 : BUG_ON(root->root_key.objectid !=
8026 : btrfs_header_owner(path->nodes[level + 1]));
8027 : }
8028 :
8029 466 : btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8030 : out:
8031 466 : wc->refs[level] = 0;
8032 466 : wc->flags[level] = 0;
8033 466 : return 0;
8034 : }
8035 :
8036 464 : static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8037 : struct btrfs_root *root,
8038 : struct btrfs_path *path,
8039 : struct walk_control *wc)
8040 : {
8041 464 : int level = wc->level;
8042 464 : int lookup_info = 1;
8043 : int ret;
8044 :
8045 946 : while (level >= 0) {
8046 482 : ret = walk_down_proc(trans, root, path, wc, lookup_info);
8047 482 : if (ret > 0)
8048 : break;
8049 :
8050 482 : if (level == 0)
8051 : break;
8052 :
8053 36 : if (path->slots[level] >=
8054 18 : btrfs_header_nritems(path->nodes[level]))
8055 : break;
8056 :
8057 18 : ret = do_walk_down(trans, root, path, wc, &lookup_info);
8058 18 : if (ret > 0) {
8059 2 : path->slots[level]++;
8060 2 : continue;
8061 16 : } else if (ret < 0)
8062 : return ret;
8063 16 : level = wc->level;
8064 : }
8065 : return 0;
8066 : }
8067 :
8068 464 : static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8069 : struct btrfs_root *root,
8070 : struct btrfs_path *path,
8071 : struct walk_control *wc, int max_level)
8072 : {
8073 464 : int level = wc->level;
8074 : int ret;
8075 :
8076 1408 : path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8077 1394 : while (level < max_level && path->nodes[level]) {
8078 480 : wc->level = level;
8079 960 : if (path->slots[level] + 1 <
8080 480 : btrfs_header_nritems(path->nodes[level])) {
8081 14 : path->slots[level]++;
8082 14 : return 0;
8083 : } else {
8084 466 : ret = walk_up_proc(trans, root, path, wc);
8085 466 : if (ret > 0)
8086 : return 0;
8087 :
8088 466 : if (path->locks[level]) {
8089 2 : btrfs_tree_unlock_rw(path->nodes[level],
8090 : path->locks[level]);
8091 2 : path->locks[level] = 0;
8092 : }
8093 466 : free_extent_buffer(path->nodes[level]);
8094 466 : path->nodes[level] = NULL;
8095 466 : level++;
8096 : }
8097 : }
8098 : return 1;
8099 : }
8100 :
8101 : /*
8102 : * drop a subvolume tree.
8103 : *
8104 : * this function traverses the tree freeing any blocks that only
8105 : * referenced by the tree.
8106 : *
8107 : * when a shared tree block is found. this function decreases its
8108 : * reference count by one. if update_ref is true, this function
8109 : * also make sure backrefs for the shared block and all lower level
8110 : * blocks are properly updated.
8111 : *
8112 : * If called with for_reloc == 0, may exit early with -EAGAIN
8113 : */
8114 450 : int btrfs_drop_snapshot(struct btrfs_root *root,
8115 : struct btrfs_block_rsv *block_rsv, int update_ref,
8116 : int for_reloc)
8117 : {
8118 : struct btrfs_path *path;
8119 : struct btrfs_trans_handle *trans;
8120 450 : struct btrfs_root *tree_root = root->fs_info->tree_root;
8121 450 : struct btrfs_root_item *root_item = &root->root_item;
8122 : struct walk_control *wc;
8123 : struct btrfs_key key;
8124 : int err = 0;
8125 : int ret;
8126 : int level;
8127 : bool root_dropped = false;
8128 :
8129 : btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8130 :
8131 450 : path = btrfs_alloc_path();
8132 450 : if (!path) {
8133 : err = -ENOMEM;
8134 : goto out;
8135 : }
8136 :
8137 450 : wc = kzalloc(sizeof(*wc), GFP_NOFS);
8138 450 : if (!wc) {
8139 0 : btrfs_free_path(path);
8140 : err = -ENOMEM;
8141 0 : goto out;
8142 : }
8143 :
8144 450 : trans = btrfs_start_transaction(tree_root, 0);
8145 450 : if (IS_ERR(trans)) {
8146 0 : err = PTR_ERR(trans);
8147 0 : goto out_free;
8148 : }
8149 :
8150 450 : if (block_rsv)
8151 439 : trans->block_rsv = block_rsv;
8152 :
8153 450 : if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8154 900 : level = btrfs_header_level(root->node);
8155 450 : path->nodes[level] = btrfs_lock_root_node(root);
8156 : btrfs_set_lock_blocking(path->nodes[level]);
8157 450 : path->slots[level] = 0;
8158 450 : path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8159 450 : memset(&wc->update_progress, 0,
8160 : sizeof(wc->update_progress));
8161 : } else {
8162 : btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8163 0 : memcpy(&wc->update_progress, &key,
8164 : sizeof(wc->update_progress));
8165 :
8166 0 : level = root_item->drop_level;
8167 0 : BUG_ON(level == 0);
8168 0 : path->lowest_level = level;
8169 0 : ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8170 0 : path->lowest_level = 0;
8171 0 : if (ret < 0) {
8172 : err = ret;
8173 : goto out_end_trans;
8174 : }
8175 0 : WARN_ON(ret > 0);
8176 :
8177 : /*
8178 : * unlock our path, this is safe because only this
8179 : * function is allowed to delete this snapshot
8180 : */
8181 0 : btrfs_unlock_up_safe(path, 0);
8182 :
8183 0 : level = btrfs_header_level(root->node);
8184 : while (1) {
8185 0 : btrfs_tree_lock(path->nodes[level]);
8186 0 : btrfs_set_lock_blocking(path->nodes[level]);
8187 0 : path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8188 :
8189 0 : ret = btrfs_lookup_extent_info(trans, root,
8190 0 : path->nodes[level]->start,
8191 : level, 1, &wc->refs[level],
8192 : &wc->flags[level]);
8193 0 : if (ret < 0) {
8194 : err = ret;
8195 : goto out_end_trans;
8196 : }
8197 0 : BUG_ON(wc->refs[level] == 0);
8198 :
8199 0 : if (level == root_item->drop_level)
8200 : break;
8201 :
8202 0 : btrfs_tree_unlock(path->nodes[level]);
8203 0 : path->locks[level] = 0;
8204 0 : WARN_ON(wc->refs[level] != 1);
8205 0 : level--;
8206 0 : }
8207 : }
8208 :
8209 450 : wc->level = level;
8210 450 : wc->shared_level = -1;
8211 450 : wc->stage = DROP_REFERENCE;
8212 450 : wc->update_ref = update_ref;
8213 450 : wc->keep_locks = 0;
8214 450 : wc->for_reloc = for_reloc;
8215 450 : wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8216 :
8217 : while (1) {
8218 :
8219 464 : ret = walk_down_tree(trans, root, path, wc);
8220 464 : if (ret < 0) {
8221 : err = ret;
8222 : break;
8223 : }
8224 :
8225 464 : ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8226 464 : if (ret < 0) {
8227 : err = ret;
8228 : break;
8229 : }
8230 :
8231 464 : if (ret > 0) {
8232 450 : BUG_ON(wc->stage != DROP_REFERENCE);
8233 : break;
8234 : }
8235 :
8236 14 : if (wc->stage == DROP_REFERENCE) {
8237 14 : level = wc->level;
8238 14 : btrfs_node_key(path->nodes[level],
8239 : &root_item->drop_progress,
8240 : path->slots[level]);
8241 14 : root_item->drop_level = level;
8242 : }
8243 :
8244 14 : BUG_ON(wc->level == 0);
8245 14 : if (btrfs_should_end_transaction(trans, tree_root) ||
8246 0 : (!for_reloc && btrfs_need_cleaner_sleep(root))) {
8247 0 : ret = btrfs_update_root(trans, tree_root,
8248 : &root->root_key,
8249 : root_item);
8250 0 : if (ret) {
8251 0 : btrfs_abort_transaction(trans, tree_root, ret);
8252 : err = ret;
8253 0 : goto out_end_trans;
8254 : }
8255 :
8256 : /*
8257 : * Qgroup update accounting is run from
8258 : * delayed ref handling. This usually works
8259 : * out because delayed refs are normally the
8260 : * only way qgroup updates are added. However,
8261 : * we may have added updates during our tree
8262 : * walk so run qgroups here to make sure we
8263 : * don't lose any updates.
8264 : */
8265 0 : ret = btrfs_delayed_qgroup_accounting(trans,
8266 : root->fs_info);
8267 0 : if (ret)
8268 0 : printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8269 : "running qgroup updates "
8270 : "during snapshot delete. "
8271 : "Quota is out of sync, "
8272 : "rescan required.\n", ret);
8273 :
8274 0 : btrfs_end_transaction_throttle(trans, tree_root);
8275 0 : if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
8276 0 : pr_debug("BTRFS: drop snapshot early exit\n");
8277 : err = -EAGAIN;
8278 : goto out_free;
8279 : }
8280 :
8281 0 : trans = btrfs_start_transaction(tree_root, 0);
8282 0 : if (IS_ERR(trans)) {
8283 0 : err = PTR_ERR(trans);
8284 0 : goto out_free;
8285 : }
8286 0 : if (block_rsv)
8287 0 : trans->block_rsv = block_rsv;
8288 : }
8289 : }
8290 450 : btrfs_release_path(path);
8291 450 : if (err)
8292 : goto out_end_trans;
8293 :
8294 450 : ret = btrfs_del_root(trans, tree_root, &root->root_key);
8295 450 : if (ret) {
8296 0 : btrfs_abort_transaction(trans, tree_root, ret);
8297 0 : goto out_end_trans;
8298 : }
8299 :
8300 450 : if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
8301 11 : ret = btrfs_find_root(tree_root, &root->root_key, path,
8302 : NULL, NULL);
8303 11 : if (ret < 0) {
8304 0 : btrfs_abort_transaction(trans, tree_root, ret);
8305 : err = ret;
8306 0 : goto out_end_trans;
8307 11 : } else if (ret > 0) {
8308 : /* if we fail to delete the orphan item this time
8309 : * around, it'll get picked up the next time.
8310 : *
8311 : * The most common failure here is just -ENOENT.
8312 : */
8313 11 : btrfs_del_orphan_item(trans, tree_root,
8314 : root->root_key.objectid);
8315 : }
8316 : }
8317 :
8318 450 : if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
8319 11 : btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
8320 : } else {
8321 439 : free_extent_buffer(root->node);
8322 439 : free_extent_buffer(root->commit_root);
8323 439 : btrfs_put_fs_root(root);
8324 : }
8325 : root_dropped = true;
8326 : out_end_trans:
8327 450 : ret = btrfs_delayed_qgroup_accounting(trans, tree_root->fs_info);
8328 450 : if (ret)
8329 0 : printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8330 : "running qgroup updates "
8331 : "during snapshot delete. "
8332 : "Quota is out of sync, "
8333 : "rescan required.\n", ret);
8334 :
8335 450 : btrfs_end_transaction_throttle(trans, tree_root);
8336 : out_free:
8337 450 : kfree(wc);
8338 450 : btrfs_free_path(path);
8339 : out:
8340 : /*
8341 : * So if we need to stop dropping the snapshot for whatever reason we
8342 : * need to make sure to add it back to the dead root list so that we
8343 : * keep trying to do the work later. This also cleans up roots if we
8344 : * don't have it in the radix (like when we recover after a power fail
8345 : * or unmount) so we don't leak memory.
8346 : */
8347 450 : if (!for_reloc && root_dropped == false)
8348 0 : btrfs_add_dead_root(root);
8349 450 : if (err && err != -EAGAIN)
8350 0 : btrfs_std_error(root->fs_info, err);
8351 450 : return err;
8352 : }
8353 :
8354 : /*
8355 : * drop subtree rooted at tree block 'node'.
8356 : *
8357 : * NOTE: this function will unlock and release tree block 'node'
8358 : * only used by relocation code
8359 : */
8360 0 : int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8361 : struct btrfs_root *root,
8362 0 : struct extent_buffer *node,
8363 0 : struct extent_buffer *parent)
8364 : {
8365 : struct btrfs_path *path;
8366 : struct walk_control *wc;
8367 : int level;
8368 : int parent_level;
8369 : int ret = 0;
8370 : int wret;
8371 :
8372 0 : BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8373 :
8374 0 : path = btrfs_alloc_path();
8375 0 : if (!path)
8376 : return -ENOMEM;
8377 :
8378 0 : wc = kzalloc(sizeof(*wc), GFP_NOFS);
8379 0 : if (!wc) {
8380 0 : btrfs_free_path(path);
8381 0 : return -ENOMEM;
8382 : }
8383 :
8384 0 : btrfs_assert_tree_locked(parent);
8385 0 : parent_level = btrfs_header_level(parent);
8386 : extent_buffer_get(parent);
8387 0 : path->nodes[parent_level] = parent;
8388 0 : path->slots[parent_level] = btrfs_header_nritems(parent);
8389 :
8390 0 : btrfs_assert_tree_locked(node);
8391 0 : level = btrfs_header_level(node);
8392 0 : path->nodes[level] = node;
8393 0 : path->slots[level] = 0;
8394 0 : path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8395 :
8396 0 : wc->refs[parent_level] = 1;
8397 0 : wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8398 0 : wc->level = level;
8399 0 : wc->shared_level = -1;
8400 0 : wc->stage = DROP_REFERENCE;
8401 0 : wc->update_ref = 0;
8402 0 : wc->keep_locks = 1;
8403 0 : wc->for_reloc = 1;
8404 0 : wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8405 :
8406 : while (1) {
8407 0 : wret = walk_down_tree(trans, root, path, wc);
8408 0 : if (wret < 0) {
8409 : ret = wret;
8410 : break;
8411 : }
8412 :
8413 0 : wret = walk_up_tree(trans, root, path, wc, parent_level);
8414 0 : if (wret < 0)
8415 : ret = wret;
8416 0 : if (wret != 0)
8417 : break;
8418 : }
8419 :
8420 0 : kfree(wc);
8421 0 : btrfs_free_path(path);
8422 0 : return ret;
8423 : }
8424 :
8425 66 : static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8426 : {
8427 : u64 num_devices;
8428 : u64 stripped;
8429 :
8430 : /*
8431 : * if restripe for this chunk_type is on pick target profile and
8432 : * return, otherwise do the usual balance
8433 : */
8434 66 : stripped = get_restripe_target(root->fs_info, flags);
8435 66 : if (stripped)
8436 : return extended_to_chunk(stripped);
8437 :
8438 66 : num_devices = root->fs_info->fs_devices->rw_devices;
8439 :
8440 : stripped = BTRFS_BLOCK_GROUP_RAID0 |
8441 : BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
8442 : BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8443 :
8444 66 : if (num_devices == 1) {
8445 : stripped |= BTRFS_BLOCK_GROUP_DUP;
8446 66 : stripped = flags & ~stripped;
8447 :
8448 : /* turn raid0 into single device chunks */
8449 66 : if (flags & BTRFS_BLOCK_GROUP_RAID0)
8450 : return stripped;
8451 :
8452 : /* turn mirroring into duplication */
8453 66 : if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8454 : BTRFS_BLOCK_GROUP_RAID10))
8455 0 : return stripped | BTRFS_BLOCK_GROUP_DUP;
8456 : } else {
8457 : /* they already had raid on here, just return */
8458 0 : if (flags & stripped)
8459 : return flags;
8460 :
8461 : stripped |= BTRFS_BLOCK_GROUP_DUP;
8462 0 : stripped = flags & ~stripped;
8463 :
8464 : /* switch duplicated blocks with raid1 */
8465 0 : if (flags & BTRFS_BLOCK_GROUP_DUP)
8466 0 : return stripped | BTRFS_BLOCK_GROUP_RAID1;
8467 :
8468 : /* this is drive concat, leave it alone */
8469 : }
8470 :
8471 : return flags;
8472 : }
8473 :
8474 532 : static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
8475 : {
8476 532 : struct btrfs_space_info *sinfo = cache->space_info;
8477 : u64 num_bytes;
8478 : u64 min_allocable_bytes;
8479 : int ret = -ENOSPC;
8480 :
8481 :
8482 : /*
8483 : * We need some metadata space and system metadata space for
8484 : * allocating chunks in some corner cases until we force to set
8485 : * it to be readonly.
8486 : */
8487 532 : if ((sinfo->flags &
8488 502 : (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8489 : !force)
8490 : min_allocable_bytes = 1 * 1024 * 1024;
8491 : else
8492 : min_allocable_bytes = 0;
8493 :
8494 : spin_lock(&sinfo->lock);
8495 : spin_lock(&cache->lock);
8496 :
8497 532 : if (cache->ro) {
8498 : ret = 0;
8499 : goto out;
8500 : }
8501 :
8502 1596 : num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8503 532 : cache->bytes_super - btrfs_block_group_used(&cache->item);
8504 :
8505 1596 : if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
8506 1064 : sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8507 532 : min_allocable_bytes <= sinfo->total_bytes) {
8508 488 : sinfo->bytes_readonly += num_bytes;
8509 488 : cache->ro = 1;
8510 : ret = 0;
8511 : }
8512 : out:
8513 : spin_unlock(&cache->lock);
8514 : spin_unlock(&sinfo->lock);
8515 532 : return ret;
8516 : }
8517 :
8518 132 : int btrfs_set_block_group_ro(struct btrfs_root *root,
8519 : struct btrfs_block_group_cache *cache)
8520 :
8521 : {
8522 : struct btrfs_trans_handle *trans;
8523 : u64 alloc_flags;
8524 : int ret;
8525 :
8526 66 : BUG_ON(cache->ro);
8527 :
8528 66 : trans = btrfs_join_transaction(root);
8529 66 : if (IS_ERR(trans))
8530 0 : return PTR_ERR(trans);
8531 :
8532 132 : alloc_flags = update_block_group_flags(root, cache->flags);
8533 66 : if (alloc_flags != cache->flags) {
8534 0 : ret = do_chunk_alloc(trans, root, alloc_flags,
8535 : CHUNK_ALLOC_FORCE);
8536 0 : if (ret < 0)
8537 : goto out;
8538 : }
8539 :
8540 66 : ret = set_block_group_ro(cache, 0);
8541 66 : if (!ret)
8542 : goto out;
8543 44 : alloc_flags = get_alloc_profile(root, cache->space_info->flags);
8544 44 : ret = do_chunk_alloc(trans, root, alloc_flags,
8545 : CHUNK_ALLOC_FORCE);
8546 44 : if (ret < 0)
8547 : goto out;
8548 44 : ret = set_block_group_ro(cache, 0);
8549 : out:
8550 66 : btrfs_end_transaction(trans, root);
8551 66 : return ret;
8552 : }
8553 :
8554 0 : int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8555 : struct btrfs_root *root, u64 type)
8556 : {
8557 0 : u64 alloc_flags = get_alloc_profile(root, type);
8558 0 : return do_chunk_alloc(trans, root, alloc_flags,
8559 : CHUNK_ALLOC_FORCE);
8560 : }
8561 :
8562 : /*
8563 : * helper to account the unused space of all the readonly block group in the
8564 : * list. takes mirrors into account.
8565 : */
8566 48484 : static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
8567 : {
8568 : struct btrfs_block_group_cache *block_group;
8569 : u64 free_bytes = 0;
8570 : int factor;
8571 :
8572 139400 : list_for_each_entry(block_group, groups_list, list) {
8573 : spin_lock(&block_group->lock);
8574 :
8575 90916 : if (!block_group->ro) {
8576 : spin_unlock(&block_group->lock);
8577 90916 : continue;
8578 : }
8579 :
8580 0 : if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8581 : BTRFS_BLOCK_GROUP_RAID10 |
8582 : BTRFS_BLOCK_GROUP_DUP))
8583 : factor = 2;
8584 : else
8585 : factor = 1;
8586 :
8587 0 : free_bytes += (block_group->key.offset -
8588 0 : btrfs_block_group_used(&block_group->item)) *
8589 : factor;
8590 :
8591 : spin_unlock(&block_group->lock);
8592 : }
8593 :
8594 48484 : return free_bytes;
8595 : }
8596 :
8597 : /*
8598 : * helper to account the unused space of all the readonly block group in the
8599 : * space_info. takes mirrors into account.
8600 : */
8601 48481 : u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8602 : {
8603 : int i;
8604 : u64 free_bytes = 0;
8605 :
8606 : spin_lock(&sinfo->lock);
8607 :
8608 387848 : for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
8609 678734 : if (!list_empty(&sinfo->block_groups[i]))
8610 48484 : free_bytes += __btrfs_get_ro_block_group_free_space(
8611 : &sinfo->block_groups[i]);
8612 :
8613 : spin_unlock(&sinfo->lock);
8614 :
8615 48481 : return free_bytes;
8616 : }
8617 :
8618 0 : void btrfs_set_block_group_rw(struct btrfs_root *root,
8619 : struct btrfs_block_group_cache *cache)
8620 : {
8621 0 : struct btrfs_space_info *sinfo = cache->space_info;
8622 : u64 num_bytes;
8623 :
8624 0 : BUG_ON(!cache->ro);
8625 :
8626 : spin_lock(&sinfo->lock);
8627 : spin_lock(&cache->lock);
8628 0 : num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8629 0 : cache->bytes_super - btrfs_block_group_used(&cache->item);
8630 0 : sinfo->bytes_readonly -= num_bytes;
8631 0 : cache->ro = 0;
8632 : spin_unlock(&cache->lock);
8633 : spin_unlock(&sinfo->lock);
8634 0 : }
8635 :
8636 : /*
8637 : * checks to see if its even possible to relocate this block group.
8638 : *
8639 : * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8640 : * ok to go ahead and try.
8641 : */
8642 72 : int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8643 : {
8644 : struct btrfs_block_group_cache *block_group;
8645 : struct btrfs_space_info *space_info;
8646 132 : struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8647 : struct btrfs_device *device;
8648 : struct btrfs_trans_handle *trans;
8649 : u64 min_free;
8650 : u64 dev_min = 1;
8651 : u64 dev_nr = 0;
8652 : u64 target;
8653 : int index;
8654 : int full = 0;
8655 : int ret = 0;
8656 :
8657 : block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8658 :
8659 : /* odd, couldn't find the block group, leave it alone */
8660 72 : if (!block_group)
8661 : return -1;
8662 :
8663 : min_free = btrfs_block_group_used(&block_group->item);
8664 :
8665 : /* no bytes used, we're good */
8666 72 : if (!min_free)
8667 : goto out;
8668 :
8669 66 : space_info = block_group->space_info;
8670 : spin_lock(&space_info->lock);
8671 :
8672 66 : full = space_info->full;
8673 :
8674 : /*
8675 : * if this is the last block group we have in this space, we can't
8676 : * relocate it unless we're able to allocate a new chunk below.
8677 : *
8678 : * Otherwise, we need to make sure we have room in the space to handle
8679 : * all of the extents from this block group. If we can, we're good
8680 : */
8681 72 : if ((space_info->total_bytes != block_group->key.offset) &&
8682 12 : (space_info->bytes_used + space_info->bytes_reserved +
8683 12 : space_info->bytes_pinned + space_info->bytes_readonly +
8684 : min_free < space_info->total_bytes)) {
8685 : spin_unlock(&space_info->lock);
8686 : goto out;
8687 : }
8688 : spin_unlock(&space_info->lock);
8689 :
8690 : /*
8691 : * ok we don't have enough space, but maybe we have free space on our
8692 : * devices to allocate new chunks for relocation, so loop through our
8693 : * alloc devices and guess if we have enough space. if this block
8694 : * group is going to be restriped, run checks against the target
8695 : * profile instead of the current one.
8696 : */
8697 : ret = -1;
8698 :
8699 : /*
8700 : * index:
8701 : * 0: raid10
8702 : * 1: raid1
8703 : * 2: dup
8704 : * 3: raid0
8705 : * 4: single
8706 : */
8707 120 : target = get_restripe_target(root->fs_info, block_group->flags);
8708 60 : if (target) {
8709 0 : index = __get_raid_index(extended_to_chunk(target));
8710 : } else {
8711 : /*
8712 : * this is just a balance, so if we were marked as full
8713 : * we know there is no space for a new chunk
8714 : */
8715 60 : if (full)
8716 : goto out;
8717 :
8718 : index = get_block_group_index(block_group);
8719 : }
8720 :
8721 60 : if (index == BTRFS_RAID_RAID10) {
8722 : dev_min = 4;
8723 : /* Divide by 2 */
8724 0 : min_free >>= 1;
8725 60 : } else if (index == BTRFS_RAID_RAID1) {
8726 : dev_min = 2;
8727 60 : } else if (index == BTRFS_RAID_DUP) {
8728 : /* Multiply by 2 */
8729 38 : min_free <<= 1;
8730 22 : } else if (index == BTRFS_RAID_RAID0) {
8731 0 : dev_min = fs_devices->rw_devices;
8732 0 : do_div(min_free, dev_min);
8733 : }
8734 :
8735 : /* We need to do this so that we can look at pending chunks */
8736 60 : trans = btrfs_join_transaction(root);
8737 60 : if (IS_ERR(trans)) {
8738 0 : ret = PTR_ERR(trans);
8739 0 : goto out;
8740 : }
8741 :
8742 60 : mutex_lock(&root->fs_info->chunk_mutex);
8743 60 : list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
8744 : u64 dev_offset;
8745 :
8746 : /*
8747 : * check to make sure we can actually find a chunk with enough
8748 : * space to fit our block group in.
8749 : */
8750 120 : if (device->total_bytes > device->bytes_used + min_free &&
8751 60 : !device->is_tgtdev_for_dev_replace) {
8752 60 : ret = find_free_dev_extent(trans, device, min_free,
8753 : &dev_offset, NULL);
8754 60 : if (!ret)
8755 60 : dev_nr++;
8756 :
8757 60 : if (dev_nr >= dev_min)
8758 : break;
8759 :
8760 : ret = -1;
8761 : }
8762 : }
8763 60 : mutex_unlock(&root->fs_info->chunk_mutex);
8764 60 : btrfs_end_transaction(trans, root);
8765 : out:
8766 72 : btrfs_put_block_group(block_group);
8767 72 : return ret;
8768 : }
8769 :
8770 1362 : static int find_first_block_group(struct btrfs_root *root,
8771 : struct btrfs_path *path, struct btrfs_key *key)
8772 : {
8773 : int ret = 0;
8774 : struct btrfs_key found_key;
8775 1364 : struct extent_buffer *leaf;
8776 : int slot;
8777 :
8778 1362 : ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
8779 1362 : if (ret < 0)
8780 : goto out;
8781 :
8782 : while (1) {
8783 1364 : slot = path->slots[0];
8784 1364 : leaf = path->nodes[0];
8785 2728 : if (slot >= btrfs_header_nritems(leaf)) {
8786 222 : ret = btrfs_next_leaf(root, path);
8787 222 : if (ret == 0)
8788 1 : continue;
8789 : if (ret < 0)
8790 : goto out;
8791 : break;
8792 : }
8793 1142 : btrfs_item_key_to_cpu(leaf, &found_key, slot);
8794 :
8795 2284 : if (found_key.objectid >= key->objectid &&
8796 1142 : found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
8797 : ret = 0;
8798 : goto out;
8799 : }
8800 1 : path->slots[0]++;
8801 : }
8802 : out:
8803 1362 : return ret;
8804 : }
8805 :
8806 221 : void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
8807 : {
8808 : struct btrfs_block_group_cache *block_group;
8809 : u64 last = 0;
8810 :
8811 : while (1) {
8812 : struct inode *inode;
8813 :
8814 : block_group = btrfs_lookup_first_block_group(info, last);
8815 3281 : while (block_group) {
8816 : spin_lock(&block_group->lock);
8817 2177 : if (block_group->iref)
8818 : break;
8819 : spin_unlock(&block_group->lock);
8820 1903 : block_group = next_block_group(info->tree_root,
8821 : block_group);
8822 : }
8823 689 : if (!block_group) {
8824 415 : if (last == 0)
8825 : break;
8826 : last = 0;
8827 194 : continue;
8828 : }
8829 :
8830 274 : inode = block_group->inode;
8831 274 : block_group->iref = 0;
8832 274 : block_group->inode = NULL;
8833 : spin_unlock(&block_group->lock);
8834 274 : iput(inode);
8835 274 : last = block_group->key.objectid + block_group->key.offset;
8836 274 : btrfs_put_block_group(block_group);
8837 : }
8838 221 : }
8839 :
8840 221 : int btrfs_free_block_groups(struct btrfs_fs_info *info)
8841 : {
8842 : struct btrfs_block_group_cache *block_group;
8843 : struct btrfs_space_info *space_info;
8844 : struct btrfs_caching_control *caching_ctl;
8845 : struct rb_node *n;
8846 :
8847 221 : down_write(&info->commit_root_sem);
8848 663 : while (!list_empty(&info->caching_block_groups)) {
8849 : caching_ctl = list_entry(info->caching_block_groups.next,
8850 : struct btrfs_caching_control, list);
8851 0 : list_del(&caching_ctl->list);
8852 0 : put_caching_control(caching_ctl);
8853 : }
8854 221 : up_write(&info->commit_root_sem);
8855 :
8856 : spin_lock(&info->block_group_cache_lock);
8857 1377 : while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
8858 1156 : block_group = rb_entry(n, struct btrfs_block_group_cache,
8859 : cache_node);
8860 1156 : rb_erase(&block_group->cache_node,
8861 : &info->block_group_cache_tree);
8862 : spin_unlock(&info->block_group_cache_lock);
8863 :
8864 1156 : down_write(&block_group->space_info->groups_sem);
8865 1156 : list_del(&block_group->list);
8866 1156 : up_write(&block_group->space_info->groups_sem);
8867 :
8868 1156 : if (block_group->cached == BTRFS_CACHE_STARTED)
8869 0 : wait_block_group_cache_done(block_group);
8870 :
8871 : /*
8872 : * We haven't cached this block group, which means we could
8873 : * possibly have excluded extents on this block group.
8874 : */
8875 1156 : if (block_group->cached == BTRFS_CACHE_NO ||
8876 : block_group->cached == BTRFS_CACHE_ERROR)
8877 260 : free_excluded_extents(info->extent_root, block_group);
8878 :
8879 1156 : btrfs_remove_free_space_cache(block_group);
8880 1156 : btrfs_put_block_group(block_group);
8881 :
8882 : spin_lock(&info->block_group_cache_lock);
8883 : }
8884 : spin_unlock(&info->block_group_cache_lock);
8885 :
8886 : /* now that all the block groups are freed, go through and
8887 : * free all the space_info structs. This is only called during
8888 : * the final stages of unmount, and so we know nobody is
8889 : * using them. We call synchronize_rcu() once before we start,
8890 : * just to be on the safe side.
8891 : */
8892 : synchronize_rcu();
8893 :
8894 221 : release_global_block_rsv(info);
8895 :
8896 1977 : while (!list_empty(&info->space_info)) {
8897 : int i;
8898 :
8899 657 : space_info = list_entry(info->space_info.next,
8900 : struct btrfs_space_info,
8901 : list);
8902 657 : if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
8903 0 : if (WARN_ON(space_info->bytes_pinned > 0 ||
8904 : space_info->bytes_reserved > 0 ||
8905 : space_info->bytes_may_use > 0)) {
8906 0 : dump_space_info(space_info, 0, 0);
8907 : }
8908 : }
8909 657 : list_del(&space_info->list);
8910 5256 : for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
8911 : struct kobject *kobj;
8912 4599 : kobj = space_info->block_group_kobjs[i];
8913 4599 : space_info->block_group_kobjs[i] = NULL;
8914 4599 : if (kobj) {
8915 1084 : kobject_del(kobj);
8916 1084 : kobject_put(kobj);
8917 : }
8918 : }
8919 657 : kobject_del(&space_info->kobj);
8920 657 : kobject_put(&space_info->kobj);
8921 : }
8922 221 : return 0;
8923 : }
8924 :
8925 1228 : static void __link_block_group(struct btrfs_space_info *space_info,
8926 : struct btrfs_block_group_cache *cache)
8927 : {
8928 : int index = get_block_group_index(cache);
8929 : bool first = false;
8930 :
8931 1228 : down_write(&space_info->groups_sem);
8932 2456 : if (list_empty(&space_info->block_groups[index]))
8933 : first = true;
8934 1228 : list_add_tail(&cache->list, &space_info->block_groups[index]);
8935 1228 : up_write(&space_info->groups_sem);
8936 :
8937 1228 : if (first) {
8938 : struct raid_kobject *rkobj;
8939 : int ret;
8940 :
8941 1090 : rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
8942 1090 : if (!rkobj)
8943 : goto out_err;
8944 1090 : rkobj->raid_type = index;
8945 1090 : kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
8946 2180 : ret = kobject_add(&rkobj->kobj, &space_info->kobj,
8947 : "%s", get_raid_name(index));
8948 1090 : if (ret) {
8949 0 : kobject_put(&rkobj->kobj);
8950 0 : goto out_err;
8951 : }
8952 1090 : space_info->block_group_kobjs[index] = &rkobj->kobj;
8953 : }
8954 :
8955 1228 : return;
8956 : out_err:
8957 0 : pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
8958 : }
8959 :
8960 : static struct btrfs_block_group_cache *
8961 1228 : btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
8962 : {
8963 : struct btrfs_block_group_cache *cache;
8964 :
8965 1228 : cache = kzalloc(sizeof(*cache), GFP_NOFS);
8966 1228 : if (!cache)
8967 : return NULL;
8968 :
8969 1228 : cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8970 : GFP_NOFS);
8971 1228 : if (!cache->free_space_ctl) {
8972 0 : kfree(cache);
8973 0 : return NULL;
8974 : }
8975 :
8976 1228 : cache->key.objectid = start;
8977 1228 : cache->key.offset = size;
8978 1228 : cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8979 :
8980 1228 : cache->sectorsize = root->sectorsize;
8981 1228 : cache->fs_info = root->fs_info;
8982 1228 : cache->full_stripe_len = btrfs_full_stripe_len(root,
8983 1228 : &root->fs_info->mapping_tree,
8984 : start);
8985 : atomic_set(&cache->count, 1);
8986 1228 : spin_lock_init(&cache->lock);
8987 1228 : init_rwsem(&cache->data_rwsem);
8988 1228 : INIT_LIST_HEAD(&cache->list);
8989 1228 : INIT_LIST_HEAD(&cache->cluster_list);
8990 1228 : INIT_LIST_HEAD(&cache->new_bg_list);
8991 1228 : btrfs_init_free_space_ctl(cache);
8992 :
8993 1228 : return cache;
8994 : }
8995 :
8996 221 : int btrfs_read_block_groups(struct btrfs_root *root)
8997 : {
8998 : struct btrfs_path *path;
8999 : int ret;
9000 : struct btrfs_block_group_cache *cache;
9001 221 : struct btrfs_fs_info *info = root->fs_info;
9002 : struct btrfs_space_info *space_info;
9003 : struct btrfs_key key;
9004 : struct btrfs_key found_key;
9005 : struct extent_buffer *leaf;
9006 : int need_clear = 0;
9007 : u64 cache_gen;
9008 :
9009 221 : root = info->extent_root;
9010 221 : key.objectid = 0;
9011 221 : key.offset = 0;
9012 : btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
9013 221 : path = btrfs_alloc_path();
9014 221 : if (!path)
9015 : return -ENOMEM;
9016 221 : path->reada = 1;
9017 :
9018 221 : cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
9019 442 : if (btrfs_test_opt(root, SPACE_CACHE) &&
9020 : btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
9021 : need_clear = 1;
9022 221 : if (btrfs_test_opt(root, CLEAR_CACHE))
9023 : need_clear = 1;
9024 :
9025 : while (1) {
9026 1362 : ret = find_first_block_group(root, path, &key);
9027 1362 : if (ret > 0)
9028 : break;
9029 1141 : if (ret != 0)
9030 : goto error;
9031 :
9032 1141 : leaf = path->nodes[0];
9033 1141 : btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9034 :
9035 1141 : cache = btrfs_create_block_group_cache(root, found_key.objectid,
9036 : found_key.offset);
9037 1141 : if (!cache) {
9038 : ret = -ENOMEM;
9039 : goto error;
9040 : }
9041 :
9042 1141 : if (need_clear) {
9043 : /*
9044 : * When we mount with old space cache, we need to
9045 : * set BTRFS_DC_CLEAR and set dirty flag.
9046 : *
9047 : * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9048 : * truncate the old free space cache inode and
9049 : * setup a new one.
9050 : * b) Setting 'dirty flag' makes sure that we flush
9051 : * the new space cache info onto disk.
9052 : */
9053 502 : cache->disk_cache_state = BTRFS_DC_CLEAR;
9054 502 : if (btrfs_test_opt(root, SPACE_CACHE))
9055 502 : cache->dirty = 1;
9056 : }
9057 :
9058 1141 : read_extent_buffer(leaf, &cache->item,
9059 1141 : btrfs_item_ptr_offset(leaf, path->slots[0]),
9060 : sizeof(cache->item));
9061 1141 : cache->flags = btrfs_block_group_flags(&cache->item);
9062 :
9063 1141 : key.objectid = found_key.objectid + found_key.offset;
9064 1141 : btrfs_release_path(path);
9065 :
9066 : /*
9067 : * We need to exclude the super stripes now so that the space
9068 : * info has super bytes accounted for, otherwise we'll think
9069 : * we have more space than we actually do.
9070 : */
9071 1141 : ret = exclude_super_stripes(root, cache);
9072 1141 : if (ret) {
9073 : /*
9074 : * We may have excluded something, so call this just in
9075 : * case.
9076 : */
9077 0 : free_excluded_extents(root, cache);
9078 0 : btrfs_put_block_group(cache);
9079 0 : goto error;
9080 : }
9081 :
9082 : /*
9083 : * check for two cases, either we are full, and therefore
9084 : * don't need to bother with the caching work since we won't
9085 : * find any space, or we are empty, and we can just add all
9086 : * the space in and be done with it. This saves us _alot_ of
9087 : * time, particularly in the full case.
9088 : */
9089 2282 : if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9090 7 : cache->last_byte_to_unpin = (u64)-1;
9091 7 : cache->cached = BTRFS_CACHE_FINISHED;
9092 7 : free_excluded_extents(root, cache);
9093 1134 : } else if (btrfs_block_group_used(&cache->item) == 0) {
9094 533 : cache->last_byte_to_unpin = (u64)-1;
9095 533 : cache->cached = BTRFS_CACHE_FINISHED;
9096 533 : add_new_free_space(cache, root->fs_info,
9097 : found_key.objectid,
9098 533 : found_key.objectid +
9099 : found_key.offset);
9100 533 : free_excluded_extents(root, cache);
9101 : }
9102 :
9103 1141 : ret = btrfs_add_block_group_cache(root->fs_info, cache);
9104 1141 : if (ret) {
9105 0 : btrfs_remove_free_space_cache(cache);
9106 0 : btrfs_put_block_group(cache);
9107 0 : goto error;
9108 : }
9109 :
9110 1141 : ret = update_space_info(info, cache->flags, found_key.offset,
9111 : btrfs_block_group_used(&cache->item),
9112 : &space_info);
9113 1141 : if (ret) {
9114 0 : btrfs_remove_free_space_cache(cache);
9115 : spin_lock(&info->block_group_cache_lock);
9116 0 : rb_erase(&cache->cache_node,
9117 : &info->block_group_cache_tree);
9118 : spin_unlock(&info->block_group_cache_lock);
9119 0 : btrfs_put_block_group(cache);
9120 0 : goto error;
9121 : }
9122 :
9123 1141 : cache->space_info = space_info;
9124 : spin_lock(&cache->space_info->lock);
9125 1141 : cache->space_info->bytes_readonly += cache->bytes_super;
9126 1141 : spin_unlock(&cache->space_info->lock);
9127 :
9128 1141 : __link_block_group(space_info, cache);
9129 :
9130 1141 : set_avail_alloc_bits(root->fs_info, cache->flags);
9131 1141 : if (btrfs_chunk_readonly(root, cache->key.objectid))
9132 0 : set_block_group_ro(cache, 1);
9133 : }
9134 :
9135 878 : list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9136 657 : if (!(get_alloc_profile(root, space_info->flags) &
9137 : (BTRFS_BLOCK_GROUP_RAID10 |
9138 : BTRFS_BLOCK_GROUP_RAID1 |
9139 : BTRFS_BLOCK_GROUP_RAID5 |
9140 : BTRFS_BLOCK_GROUP_RAID6 |
9141 : BTRFS_BLOCK_GROUP_DUP)))
9142 227 : continue;
9143 : /*
9144 : * avoid allocating from un-mirrored block group if there are
9145 : * mirrored block groups.
9146 : */
9147 430 : list_for_each_entry(cache,
9148 : &space_info->block_groups[BTRFS_RAID_RAID0],
9149 : list)
9150 0 : set_block_group_ro(cache, 1);
9151 852 : list_for_each_entry(cache,
9152 : &space_info->block_groups[BTRFS_RAID_SINGLE],
9153 : list)
9154 422 : set_block_group_ro(cache, 1);
9155 : }
9156 :
9157 221 : init_global_block_rsv(info);
9158 : ret = 0;
9159 : error:
9160 221 : btrfs_free_path(path);
9161 221 : return ret;
9162 : }
9163 :
9164 87 : void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9165 : struct btrfs_root *root)
9166 : {
9167 : struct btrfs_block_group_cache *block_group, *tmp;
9168 87 : struct btrfs_root *extent_root = root->fs_info->extent_root;
9169 : struct btrfs_block_group_item item;
9170 : struct btrfs_key key;
9171 : int ret = 0;
9172 :
9173 174 : list_for_each_entry_safe(block_group, tmp, &trans->new_bgs,
9174 : new_bg_list) {
9175 : list_del_init(&block_group->new_bg_list);
9176 :
9177 87 : if (ret)
9178 0 : continue;
9179 :
9180 : spin_lock(&block_group->lock);
9181 87 : memcpy(&item, &block_group->item, sizeof(item));
9182 87 : memcpy(&key, &block_group->key, sizeof(key));
9183 : spin_unlock(&block_group->lock);
9184 :
9185 87 : ret = btrfs_insert_item(trans, extent_root, &key, &item,
9186 : sizeof(item));
9187 87 : if (ret)
9188 0 : btrfs_abort_transaction(trans, extent_root, ret);
9189 87 : ret = btrfs_finish_chunk_alloc(trans, extent_root,
9190 : key.objectid, key.offset);
9191 87 : if (ret)
9192 0 : btrfs_abort_transaction(trans, extent_root, ret);
9193 : }
9194 87 : }
9195 :
9196 174 : int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9197 : struct btrfs_root *root, u64 bytes_used,
9198 : u64 type, u64 chunk_objectid, u64 chunk_offset,
9199 : u64 size)
9200 : {
9201 : int ret;
9202 : struct btrfs_root *extent_root;
9203 : struct btrfs_block_group_cache *cache;
9204 :
9205 87 : extent_root = root->fs_info->extent_root;
9206 :
9207 : btrfs_set_log_full_commit(root->fs_info, trans);
9208 :
9209 87 : cache = btrfs_create_block_group_cache(root, chunk_offset, size);
9210 87 : if (!cache)
9211 : return -ENOMEM;
9212 :
9213 : btrfs_set_block_group_used(&cache->item, bytes_used);
9214 : btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
9215 : btrfs_set_block_group_flags(&cache->item, type);
9216 :
9217 87 : cache->flags = type;
9218 87 : cache->last_byte_to_unpin = (u64)-1;
9219 87 : cache->cached = BTRFS_CACHE_FINISHED;
9220 87 : ret = exclude_super_stripes(root, cache);
9221 87 : if (ret) {
9222 : /*
9223 : * We may have excluded something, so call this just in
9224 : * case.
9225 : */
9226 0 : free_excluded_extents(root, cache);
9227 0 : btrfs_put_block_group(cache);
9228 0 : return ret;
9229 : }
9230 :
9231 87 : add_new_free_space(cache, root->fs_info, chunk_offset,
9232 : chunk_offset + size);
9233 :
9234 87 : free_excluded_extents(root, cache);
9235 :
9236 87 : ret = btrfs_add_block_group_cache(root->fs_info, cache);
9237 87 : if (ret) {
9238 0 : btrfs_remove_free_space_cache(cache);
9239 0 : btrfs_put_block_group(cache);
9240 0 : return ret;
9241 : }
9242 :
9243 87 : ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9244 : &cache->space_info);
9245 87 : if (ret) {
9246 0 : btrfs_remove_free_space_cache(cache);
9247 0 : spin_lock(&root->fs_info->block_group_cache_lock);
9248 0 : rb_erase(&cache->cache_node,
9249 0 : &root->fs_info->block_group_cache_tree);
9250 0 : spin_unlock(&root->fs_info->block_group_cache_lock);
9251 0 : btrfs_put_block_group(cache);
9252 0 : return ret;
9253 : }
9254 87 : update_global_block_rsv(root->fs_info);
9255 :
9256 87 : spin_lock(&cache->space_info->lock);
9257 87 : cache->space_info->bytes_readonly += cache->bytes_super;
9258 87 : spin_unlock(&cache->space_info->lock);
9259 :
9260 87 : __link_block_group(cache->space_info, cache);
9261 :
9262 87 : list_add_tail(&cache->new_bg_list, &trans->new_bgs);
9263 :
9264 87 : set_avail_alloc_bits(extent_root->fs_info, type);
9265 :
9266 87 : return 0;
9267 : }
9268 :
9269 6 : static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9270 : {
9271 6 : u64 extra_flags = chunk_to_extended(flags) &
9272 : BTRFS_EXTENDED_PROFILE_MASK;
9273 :
9274 : write_seqlock(&fs_info->profiles_lock);
9275 6 : if (flags & BTRFS_BLOCK_GROUP_DATA)
9276 0 : fs_info->avail_data_alloc_bits &= ~extra_flags;
9277 6 : if (flags & BTRFS_BLOCK_GROUP_METADATA)
9278 3 : fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9279 6 : if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9280 3 : fs_info->avail_system_alloc_bits &= ~extra_flags;
9281 : write_sequnlock(&fs_info->profiles_lock);
9282 6 : }
9283 :
9284 72 : int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
9285 : struct btrfs_root *root, u64 group_start)
9286 : {
9287 : struct btrfs_path *path;
9288 : struct btrfs_block_group_cache *block_group;
9289 : struct btrfs_free_cluster *cluster;
9290 72 : struct btrfs_root *tree_root = root->fs_info->tree_root;
9291 : struct btrfs_key key;
9292 : struct inode *inode;
9293 : struct kobject *kobj = NULL;
9294 : int ret;
9295 : int index;
9296 : int factor;
9297 :
9298 72 : root = root->fs_info->extent_root;
9299 :
9300 72 : block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9301 72 : BUG_ON(!block_group);
9302 72 : BUG_ON(!block_group->ro);
9303 :
9304 : /*
9305 : * Free the reserved super bytes from this block group before
9306 : * remove it.
9307 : */
9308 72 : free_excluded_extents(root, block_group);
9309 :
9310 72 : memcpy(&key, &block_group->key, sizeof(key));
9311 : index = get_block_group_index(block_group);
9312 72 : if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9313 : BTRFS_BLOCK_GROUP_RAID1 |
9314 : BTRFS_BLOCK_GROUP_RAID10))
9315 : factor = 2;
9316 : else
9317 : factor = 1;
9318 :
9319 : /* make sure this block group isn't part of an allocation cluster */
9320 72 : cluster = &root->fs_info->data_alloc_cluster;
9321 : spin_lock(&cluster->refill_lock);
9322 72 : btrfs_return_cluster_to_free_space(block_group, cluster);
9323 : spin_unlock(&cluster->refill_lock);
9324 :
9325 : /*
9326 : * make sure this block group isn't part of a metadata
9327 : * allocation cluster
9328 : */
9329 72 : cluster = &root->fs_info->meta_alloc_cluster;
9330 : spin_lock(&cluster->refill_lock);
9331 72 : btrfs_return_cluster_to_free_space(block_group, cluster);
9332 : spin_unlock(&cluster->refill_lock);
9333 :
9334 72 : path = btrfs_alloc_path();
9335 72 : if (!path) {
9336 : ret = -ENOMEM;
9337 : goto out;
9338 : }
9339 :
9340 72 : inode = lookup_free_space_inode(tree_root, block_group, path);
9341 72 : if (!IS_ERR(inode)) {
9342 41 : ret = btrfs_orphan_add(trans, inode);
9343 41 : if (ret) {
9344 0 : btrfs_add_delayed_iput(inode);
9345 0 : goto out;
9346 : }
9347 41 : clear_nlink(inode);
9348 : /* One for the block groups ref */
9349 : spin_lock(&block_group->lock);
9350 41 : if (block_group->iref) {
9351 41 : block_group->iref = 0;
9352 41 : block_group->inode = NULL;
9353 : spin_unlock(&block_group->lock);
9354 41 : iput(inode);
9355 : } else {
9356 : spin_unlock(&block_group->lock);
9357 : }
9358 : /* One for our lookup ref */
9359 41 : btrfs_add_delayed_iput(inode);
9360 : }
9361 :
9362 72 : key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9363 72 : key.offset = block_group->key.objectid;
9364 72 : key.type = 0;
9365 :
9366 72 : ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9367 72 : if (ret < 0)
9368 : goto out;
9369 72 : if (ret > 0)
9370 31 : btrfs_release_path(path);
9371 72 : if (ret == 0) {
9372 : ret = btrfs_del_item(trans, tree_root, path);
9373 41 : if (ret)
9374 : goto out;
9375 41 : btrfs_release_path(path);
9376 : }
9377 :
9378 72 : spin_lock(&root->fs_info->block_group_cache_lock);
9379 72 : rb_erase(&block_group->cache_node,
9380 72 : &root->fs_info->block_group_cache_tree);
9381 :
9382 72 : if (root->fs_info->first_logical_byte == block_group->key.objectid)
9383 22 : root->fs_info->first_logical_byte = (u64)-1;
9384 72 : spin_unlock(&root->fs_info->block_group_cache_lock);
9385 :
9386 72 : down_write(&block_group->space_info->groups_sem);
9387 : /*
9388 : * we must use list_del_init so people can check to see if they
9389 : * are still on the list after taking the semaphore
9390 : */
9391 72 : list_del_init(&block_group->list);
9392 144 : if (list_empty(&block_group->space_info->block_groups[index])) {
9393 6 : kobj = block_group->space_info->block_group_kobjs[index];
9394 6 : block_group->space_info->block_group_kobjs[index] = NULL;
9395 6 : clear_avail_alloc_bits(root->fs_info, block_group->flags);
9396 : }
9397 72 : up_write(&block_group->space_info->groups_sem);
9398 72 : if (kobj) {
9399 6 : kobject_del(kobj);
9400 6 : kobject_put(kobj);
9401 : }
9402 :
9403 72 : if (block_group->cached == BTRFS_CACHE_STARTED)
9404 0 : wait_block_group_cache_done(block_group);
9405 :
9406 72 : btrfs_remove_free_space_cache(block_group);
9407 :
9408 72 : spin_lock(&block_group->space_info->lock);
9409 72 : block_group->space_info->total_bytes -= block_group->key.offset;
9410 72 : block_group->space_info->bytes_readonly -= block_group->key.offset;
9411 72 : block_group->space_info->disk_total -= block_group->key.offset * factor;
9412 72 : spin_unlock(&block_group->space_info->lock);
9413 :
9414 72 : memcpy(&key, &block_group->key, sizeof(key));
9415 :
9416 72 : btrfs_clear_space_info_full(root->fs_info);
9417 :
9418 72 : btrfs_put_block_group(block_group);
9419 72 : btrfs_put_block_group(block_group);
9420 :
9421 72 : ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
9422 72 : if (ret > 0)
9423 : ret = -EIO;
9424 72 : if (ret < 0)
9425 : goto out;
9426 :
9427 : ret = btrfs_del_item(trans, root, path);
9428 : out:
9429 72 : btrfs_free_path(path);
9430 72 : return ret;
9431 : }
9432 :
9433 221 : int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
9434 : {
9435 : struct btrfs_space_info *space_info;
9436 : struct btrfs_super_block *disk_super;
9437 : u64 features;
9438 : u64 flags;
9439 : int mixed = 0;
9440 : int ret;
9441 :
9442 221 : disk_super = fs_info->super_copy;
9443 221 : if (!btrfs_super_root(disk_super))
9444 : return 1;
9445 :
9446 : features = btrfs_super_incompat_flags(disk_super);
9447 221 : if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
9448 : mixed = 1;
9449 :
9450 : flags = BTRFS_BLOCK_GROUP_SYSTEM;
9451 221 : ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9452 221 : if (ret)
9453 : goto out;
9454 :
9455 221 : if (mixed) {
9456 : flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
9457 6 : ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9458 : } else {
9459 : flags = BTRFS_BLOCK_GROUP_METADATA;
9460 215 : ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9461 215 : if (ret)
9462 : goto out;
9463 :
9464 : flags = BTRFS_BLOCK_GROUP_DATA;
9465 215 : ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9466 : }
9467 : out:
9468 221 : return ret;
9469 : }
9470 :
9471 0 : int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
9472 : {
9473 0 : return unpin_extent_range(root, start, end);
9474 : }
9475 :
9476 0 : int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
9477 : u64 num_bytes, u64 *actual_bytes)
9478 : {
9479 0 : return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
9480 : }
9481 :
9482 0 : int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
9483 : {
9484 0 : struct btrfs_fs_info *fs_info = root->fs_info;
9485 : struct btrfs_block_group_cache *cache = NULL;
9486 : u64 group_trimmed;
9487 : u64 start;
9488 : u64 end;
9489 : u64 trimmed = 0;
9490 0 : u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
9491 : int ret = 0;
9492 :
9493 : /*
9494 : * try to trim all FS space, our block group may start from non-zero.
9495 : */
9496 0 : if (range->len == total_bytes)
9497 0 : cache = btrfs_lookup_first_block_group(fs_info, range->start);
9498 : else
9499 0 : cache = btrfs_lookup_block_group(fs_info, range->start);
9500 :
9501 0 : while (cache) {
9502 0 : if (cache->key.objectid >= (range->start + range->len)) {
9503 0 : btrfs_put_block_group(cache);
9504 0 : break;
9505 : }
9506 :
9507 0 : start = max(range->start, cache->key.objectid);
9508 0 : end = min(range->start + range->len,
9509 : cache->key.objectid + cache->key.offset);
9510 :
9511 0 : if (end - start >= range->minlen) {
9512 0 : if (!block_group_cache_done(cache)) {
9513 0 : ret = cache_block_group(cache, 0);
9514 0 : if (ret) {
9515 0 : btrfs_put_block_group(cache);
9516 0 : break;
9517 : }
9518 0 : ret = wait_block_group_cache_done(cache);
9519 0 : if (ret) {
9520 0 : btrfs_put_block_group(cache);
9521 0 : break;
9522 : }
9523 : }
9524 0 : ret = btrfs_trim_block_group(cache,
9525 : &group_trimmed,
9526 : start,
9527 : end,
9528 : range->minlen);
9529 :
9530 0 : trimmed += group_trimmed;
9531 0 : if (ret) {
9532 0 : btrfs_put_block_group(cache);
9533 0 : break;
9534 : }
9535 : }
9536 :
9537 0 : cache = next_block_group(fs_info->tree_root, cache);
9538 : }
9539 :
9540 0 : range->len = trimmed;
9541 0 : return ret;
9542 : }
9543 :
9544 : /*
9545 : * btrfs_{start,end}_write() is similar to mnt_{want, drop}_write(),
9546 : * they are used to prevent the some tasks writing data into the page cache
9547 : * by nocow before the subvolume is snapshoted, but flush the data into
9548 : * the disk after the snapshot creation.
9549 : */
9550 1650 : void btrfs_end_nocow_write(struct btrfs_root *root)
9551 : {
9552 1650 : percpu_counter_dec(&root->subv_writers->counter);
9553 : /*
9554 : * Make sure counter is updated before we wake up
9555 : * waiters.
9556 : */
9557 1650 : smp_mb();
9558 3300 : if (waitqueue_active(&root->subv_writers->wait))
9559 0 : wake_up(&root->subv_writers->wait);
9560 1650 : }
9561 :
9562 2597 : int btrfs_start_nocow_write(struct btrfs_root *root)
9563 : {
9564 2597 : if (unlikely(atomic_read(&root->will_be_snapshoted)))
9565 : return 0;
9566 :
9567 1650 : percpu_counter_inc(&root->subv_writers->counter);
9568 : /*
9569 : * Make sure counter is updated before we check for snapshot creation.
9570 : */
9571 1650 : smp_mb();
9572 1650 : if (unlikely(atomic_read(&root->will_be_snapshoted))) {
9573 0 : btrfs_end_nocow_write(root);
9574 0 : return 0;
9575 : }
9576 : return 1;
9577 : }
|