Line data Source code
1 : /*
2 : * Copyright (C) 2012 Alexander Block. All rights reserved.
3 : *
4 : * This program is free software; you can redistribute it and/or
5 : * modify it under the terms of the GNU General Public
6 : * License v2 as published by the Free Software Foundation.
7 : *
8 : * This program is distributed in the hope that it will be useful,
9 : * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 : * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 : * General Public License for more details.
12 : *
13 : * You should have received a copy of the GNU General Public
14 : * License along with this program; if not, write to the
15 : * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 : * Boston, MA 021110-1307, USA.
17 : */
18 :
19 : #include <linux/bsearch.h>
20 : #include <linux/fs.h>
21 : #include <linux/file.h>
22 : #include <linux/sort.h>
23 : #include <linux/mount.h>
24 : #include <linux/xattr.h>
25 : #include <linux/posix_acl_xattr.h>
26 : #include <linux/radix-tree.h>
27 : #include <linux/vmalloc.h>
28 : #include <linux/string.h>
29 :
30 : #include "send.h"
31 : #include "backref.h"
32 : #include "hash.h"
33 : #include "locking.h"
34 : #include "disk-io.h"
35 : #include "btrfs_inode.h"
36 : #include "transaction.h"
37 :
38 : static int g_verbose = 0;
39 :
40 : #define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__)
41 :
42 : /*
43 : * A fs_path is a helper to dynamically build path names with unknown size.
44 : * It reallocates the internal buffer on demand.
45 : * It allows fast adding of path elements on the right side (normal path) and
46 : * fast adding to the left side (reversed path). A reversed path can also be
47 : * unreversed if needed.
48 : */
49 : struct fs_path {
50 : union {
51 : struct {
52 : char *start;
53 : char *end;
54 :
55 : char *buf;
56 : unsigned short buf_len:15;
57 : unsigned short reversed:1;
58 : char inline_buf[];
59 : };
60 : /*
61 : * Average path length does not exceed 200 bytes, we'll have
62 : * better packing in the slab and higher chance to satisfy
63 : * a allocation later during send.
64 : */
65 : char pad[256];
66 : };
67 : };
68 : #define FS_PATH_INLINE_SIZE \
69 : (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
70 :
71 :
72 : /* reused for each extent */
73 : struct clone_root {
74 : struct btrfs_root *root;
75 : u64 ino;
76 : u64 offset;
77 :
78 : u64 found_refs;
79 : };
80 :
81 : #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
82 : #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
83 :
84 : struct send_ctx {
85 : struct file *send_filp;
86 : loff_t send_off;
87 : char *send_buf;
88 : u32 send_size;
89 : u32 send_max_size;
90 : u64 total_send_size;
91 : u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
92 : u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
93 :
94 : struct btrfs_root *send_root;
95 : struct btrfs_root *parent_root;
96 : struct clone_root *clone_roots;
97 : int clone_roots_cnt;
98 :
99 : /* current state of the compare_tree call */
100 : struct btrfs_path *left_path;
101 : struct btrfs_path *right_path;
102 : struct btrfs_key *cmp_key;
103 :
104 : /*
105 : * infos of the currently processed inode. In case of deleted inodes,
106 : * these are the values from the deleted inode.
107 : */
108 : u64 cur_ino;
109 : u64 cur_inode_gen;
110 : int cur_inode_new;
111 : int cur_inode_new_gen;
112 : int cur_inode_deleted;
113 : u64 cur_inode_size;
114 : u64 cur_inode_mode;
115 : u64 cur_inode_rdev;
116 : u64 cur_inode_last_extent;
117 :
118 : u64 send_progress;
119 :
120 : struct list_head new_refs;
121 : struct list_head deleted_refs;
122 :
123 : struct radix_tree_root name_cache;
124 : struct list_head name_cache_list;
125 : int name_cache_size;
126 :
127 : struct file_ra_state ra;
128 :
129 : char *read_buf;
130 :
131 : /*
132 : * We process inodes by their increasing order, so if before an
133 : * incremental send we reverse the parent/child relationship of
134 : * directories such that a directory with a lower inode number was
135 : * the parent of a directory with a higher inode number, and the one
136 : * becoming the new parent got renamed too, we can't rename/move the
137 : * directory with lower inode number when we finish processing it - we
138 : * must process the directory with higher inode number first, then
139 : * rename/move it and then rename/move the directory with lower inode
140 : * number. Example follows.
141 : *
142 : * Tree state when the first send was performed:
143 : *
144 : * .
145 : * |-- a (ino 257)
146 : * |-- b (ino 258)
147 : * |
148 : * |
149 : * |-- c (ino 259)
150 : * | |-- d (ino 260)
151 : * |
152 : * |-- c2 (ino 261)
153 : *
154 : * Tree state when the second (incremental) send is performed:
155 : *
156 : * .
157 : * |-- a (ino 257)
158 : * |-- b (ino 258)
159 : * |-- c2 (ino 261)
160 : * |-- d2 (ino 260)
161 : * |-- cc (ino 259)
162 : *
163 : * The sequence of steps that lead to the second state was:
164 : *
165 : * mv /a/b/c/d /a/b/c2/d2
166 : * mv /a/b/c /a/b/c2/d2/cc
167 : *
168 : * "c" has lower inode number, but we can't move it (2nd mv operation)
169 : * before we move "d", which has higher inode number.
170 : *
171 : * So we just memorize which move/rename operations must be performed
172 : * later when their respective parent is processed and moved/renamed.
173 : */
174 :
175 : /* Indexed by parent directory inode number. */
176 : struct rb_root pending_dir_moves;
177 :
178 : /*
179 : * Reverse index, indexed by the inode number of a directory that
180 : * is waiting for the move/rename of its immediate parent before its
181 : * own move/rename can be performed.
182 : */
183 : struct rb_root waiting_dir_moves;
184 :
185 : /*
186 : * A directory that is going to be rm'ed might have a child directory
187 : * which is in the pending directory moves index above. In this case,
188 : * the directory can only be removed after the move/rename of its child
189 : * is performed. Example:
190 : *
191 : * Parent snapshot:
192 : *
193 : * . (ino 256)
194 : * |-- a/ (ino 257)
195 : * |-- b/ (ino 258)
196 : * |-- c/ (ino 259)
197 : * | |-- x/ (ino 260)
198 : * |
199 : * |-- y/ (ino 261)
200 : *
201 : * Send snapshot:
202 : *
203 : * . (ino 256)
204 : * |-- a/ (ino 257)
205 : * |-- b/ (ino 258)
206 : * |-- YY/ (ino 261)
207 : * |-- x/ (ino 260)
208 : *
209 : * Sequence of steps that lead to the send snapshot:
210 : * rm -f /a/b/c/foo.txt
211 : * mv /a/b/y /a/b/YY
212 : * mv /a/b/c/x /a/b/YY
213 : * rmdir /a/b/c
214 : *
215 : * When the child is processed, its move/rename is delayed until its
216 : * parent is processed (as explained above), but all other operations
217 : * like update utimes, chown, chgrp, etc, are performed and the paths
218 : * that it uses for those operations must use the orphanized name of
219 : * its parent (the directory we're going to rm later), so we need to
220 : * memorize that name.
221 : *
222 : * Indexed by the inode number of the directory to be deleted.
223 : */
224 : struct rb_root orphan_dirs;
225 : };
226 :
227 : struct pending_dir_move {
228 : struct rb_node node;
229 : struct list_head list;
230 : u64 parent_ino;
231 : u64 ino;
232 : u64 gen;
233 : struct list_head update_refs;
234 : };
235 :
236 : struct waiting_dir_move {
237 : struct rb_node node;
238 : u64 ino;
239 : /*
240 : * There might be some directory that could not be removed because it
241 : * was waiting for this directory inode to be moved first. Therefore
242 : * after this directory is moved, we can try to rmdir the ino rmdir_ino.
243 : */
244 : u64 rmdir_ino;
245 : };
246 :
247 : struct orphan_dir_info {
248 : struct rb_node node;
249 : u64 ino;
250 : u64 gen;
251 : };
252 :
253 : struct name_cache_entry {
254 : struct list_head list;
255 : /*
256 : * radix_tree has only 32bit entries but we need to handle 64bit inums.
257 : * We use the lower 32bit of the 64bit inum to store it in the tree. If
258 : * more then one inum would fall into the same entry, we use radix_list
259 : * to store the additional entries. radix_list is also used to store
260 : * entries where two entries have the same inum but different
261 : * generations.
262 : */
263 : struct list_head radix_list;
264 : u64 ino;
265 : u64 gen;
266 : u64 parent_ino;
267 : u64 parent_gen;
268 : int ret;
269 : int need_later_update;
270 : int name_len;
271 : char name[];
272 : };
273 :
274 : static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
275 :
276 : static struct waiting_dir_move *
277 : get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
278 :
279 : static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
280 :
281 : static int need_send_hole(struct send_ctx *sctx)
282 : {
283 22396 : return (sctx->parent_root && !sctx->cur_inode_new &&
284 22742 : !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
285 366 : S_ISREG(sctx->cur_inode_mode));
286 : }
287 :
288 : static void fs_path_reset(struct fs_path *p)
289 : {
290 102183 : if (p->reversed) {
291 24623 : p->start = p->buf + p->buf_len - 1;
292 24623 : p->end = p->start;
293 24623 : *p->start = 0;
294 : } else {
295 77560 : p->start = p->buf;
296 77560 : p->end = p->start;
297 77560 : *p->start = 0;
298 : }
299 : }
300 :
301 48653 : static struct fs_path *fs_path_alloc(void)
302 : {
303 : struct fs_path *p;
304 :
305 : p = kmalloc(sizeof(*p), GFP_NOFS);
306 48653 : if (!p)
307 : return NULL;
308 48653 : p->reversed = 0;
309 48653 : p->buf = p->inline_buf;
310 48653 : p->buf_len = FS_PATH_INLINE_SIZE;
311 : fs_path_reset(p);
312 48653 : return p;
313 : }
314 :
315 410 : static struct fs_path *fs_path_alloc_reversed(void)
316 : {
317 : struct fs_path *p;
318 :
319 410 : p = fs_path_alloc();
320 410 : if (!p)
321 : return NULL;
322 410 : p->reversed = 1;
323 : fs_path_reset(p);
324 410 : return p;
325 : }
326 :
327 49146 : static void fs_path_free(struct fs_path *p)
328 : {
329 49146 : if (!p)
330 49146 : return;
331 48653 : if (p->buf != p->inline_buf)
332 19 : kfree(p->buf);
333 48653 : kfree(p);
334 : }
335 :
336 : static int fs_path_len(struct fs_path *p)
337 : {
338 1143 : return p->end - p->start;
339 : }
340 :
341 58557 : static int fs_path_ensure_buf(struct fs_path *p, int len)
342 : {
343 : char *tmp_buf;
344 : int path_len;
345 : int old_buf_len;
346 :
347 58557 : len++;
348 :
349 58557 : if (p->buf_len >= len)
350 : return 0;
351 :
352 19 : if (len > PATH_MAX) {
353 0 : WARN_ON(1);
354 0 : return -ENOMEM;
355 : }
356 :
357 19 : path_len = p->end - p->start;
358 : old_buf_len = p->buf_len;
359 :
360 : /*
361 : * First time the inline_buf does not suffice
362 : */
363 19 : if (p->buf == p->inline_buf) {
364 19 : tmp_buf = kmalloc(len, GFP_NOFS);
365 19 : if (tmp_buf)
366 19 : memcpy(tmp_buf, p->buf, old_buf_len);
367 : } else {
368 0 : tmp_buf = krealloc(p->buf, len, GFP_NOFS);
369 : }
370 19 : if (!tmp_buf)
371 : return -ENOMEM;
372 19 : p->buf = tmp_buf;
373 : /*
374 : * The real size of the buffer is bigger, this will let the fast path
375 : * happen most of the time
376 : */
377 19 : p->buf_len = ksize(p->buf);
378 :
379 19 : if (p->reversed) {
380 5 : tmp_buf = p->buf + old_buf_len - path_len - 1;
381 5 : p->end = p->buf + p->buf_len - 1;
382 5 : p->start = p->end - path_len;
383 5 : memmove(p->start, tmp_buf, path_len + 1);
384 : } else {
385 14 : p->start = p->buf;
386 14 : p->end = p->start + path_len;
387 : }
388 : return 0;
389 : }
390 :
391 58557 : static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
392 : char **prepared)
393 : {
394 : int ret;
395 : int new_len;
396 :
397 58557 : new_len = p->end - p->start + name_len;
398 58557 : if (p->start != p->end)
399 5029 : new_len++;
400 58557 : ret = fs_path_ensure_buf(p, new_len);
401 58557 : if (ret < 0)
402 : goto out;
403 :
404 58557 : if (p->reversed) {
405 28699 : if (p->start != p->end)
406 4649 : *--p->start = '/';
407 28699 : p->start -= name_len;
408 28699 : *prepared = p->start;
409 : } else {
410 29858 : if (p->start != p->end)
411 380 : *p->end++ = '/';
412 29858 : *prepared = p->end;
413 29858 : p->end += name_len;
414 29858 : *p->end = 0;
415 : }
416 :
417 : out:
418 58557 : return ret;
419 : }
420 :
421 28308 : static int fs_path_add(struct fs_path *p, const char *name, int name_len)
422 : {
423 : int ret;
424 : char *prepared;
425 :
426 28308 : ret = fs_path_prepare_for_add(p, name_len, &prepared);
427 28308 : if (ret < 0)
428 : goto out;
429 28308 : memcpy(prepared, name, name_len);
430 :
431 : out:
432 28308 : return ret;
433 : }
434 :
435 28956 : static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
436 : {
437 : int ret;
438 : char *prepared;
439 :
440 28956 : ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
441 28956 : if (ret < 0)
442 : goto out;
443 28956 : memcpy(prepared, p2->start, p2->end - p2->start);
444 :
445 : out:
446 28956 : return ret;
447 : }
448 :
449 1293 : static int fs_path_add_from_extent_buffer(struct fs_path *p,
450 : struct extent_buffer *eb,
451 : unsigned long off, int len)
452 : {
453 : int ret;
454 : char *prepared;
455 :
456 1293 : ret = fs_path_prepare_for_add(p, len, &prepared);
457 1293 : if (ret < 0)
458 : goto out;
459 :
460 1293 : read_extent_buffer(eb, prepared, off, len);
461 :
462 : out:
463 1293 : return ret;
464 : }
465 :
466 253 : static int fs_path_copy(struct fs_path *p, struct fs_path *from)
467 : {
468 : int ret;
469 :
470 253 : p->reversed = from->reversed;
471 : fs_path_reset(p);
472 :
473 253 : ret = fs_path_add_path(p, from);
474 :
475 253 : return ret;
476 : }
477 :
478 :
479 23795 : static void fs_path_unreverse(struct fs_path *p)
480 : {
481 : char *tmp;
482 : int len;
483 :
484 23795 : if (!p->reversed)
485 23795 : return;
486 :
487 23795 : tmp = p->start;
488 23795 : len = p->end - p->start;
489 23795 : p->start = p->buf;
490 23795 : p->end = p->start + len;
491 23795 : memmove(p->start, tmp, len + 1);
492 23795 : p->reversed = 0;
493 : }
494 :
495 : static struct btrfs_path *alloc_path_for_send(void)
496 : {
497 : struct btrfs_path *path;
498 :
499 29498 : path = btrfs_alloc_path();
500 29498 : if (!path)
501 : return NULL;
502 29498 : path->search_commit_root = 1;
503 29498 : path->skip_locking = 1;
504 29498 : path->need_commit_sem = 1;
505 : return path;
506 : }
507 :
508 23936 : static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
509 : {
510 : int ret;
511 : mm_segment_t old_fs;
512 : u32 pos = 0;
513 :
514 23936 : old_fs = get_fs();
515 23936 : set_fs(KERNEL_DS);
516 :
517 71808 : while (pos < len) {
518 23936 : ret = vfs_write(filp, (char *)buf + pos, len - pos, off);
519 : /* TODO handle that correctly */
520 : /*if (ret == -ERESTARTSYS) {
521 : continue;
522 : }*/
523 23936 : if (ret < 0)
524 : goto out;
525 23936 : if (ret == 0) {
526 : ret = -EIO;
527 : goto out;
528 : }
529 23936 : pos += ret;
530 : }
531 :
532 : ret = 0;
533 :
534 : out:
535 23936 : set_fs(old_fs);
536 23936 : return ret;
537 : }
538 :
539 71525 : static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
540 : {
541 : struct btrfs_tlv_header *hdr;
542 71525 : int total_len = sizeof(*hdr) + len;
543 71525 : int left = sctx->send_max_size - sctx->send_size;
544 :
545 71525 : if (unlikely(left < total_len))
546 : return -EOVERFLOW;
547 :
548 71525 : hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
549 71525 : hdr->tlv_type = cpu_to_le16(attr);
550 71525 : hdr->tlv_len = cpu_to_le16(len);
551 71525 : memcpy(hdr + 1, data, len);
552 71525 : sctx->send_size += total_len;
553 :
554 71525 : return 0;
555 : }
556 :
557 : #define TLV_PUT_DEFINE_INT(bits) \
558 : static int tlv_put_u##bits(struct send_ctx *sctx, \
559 : u##bits attr, u##bits value) \
560 : { \
561 : __le##bits __tmp = cpu_to_le##bits(value); \
562 : return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
563 : }
564 :
565 23046 : TLV_PUT_DEFINE_INT(64)
566 :
567 24205 : static int tlv_put_string(struct send_ctx *sctx, u16 attr,
568 : const char *str, int len)
569 : {
570 24205 : if (len == -1)
571 0 : len = strlen(str);
572 24205 : return tlv_put(sctx, attr, str, len);
573 : }
574 :
575 : static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
576 : const u8 *uuid)
577 : {
578 60 : return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
579 : }
580 :
581 2298 : static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
582 : struct extent_buffer *eb,
583 : struct btrfs_timespec *ts)
584 : {
585 : struct btrfs_timespec bts;
586 2298 : read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
587 2298 : return tlv_put(sctx, attr, &bts, sizeof(bts));
588 : }
589 :
590 :
591 : #define TLV_PUT(sctx, attrtype, attrlen, data) \
592 : do { \
593 : ret = tlv_put(sctx, attrtype, attrlen, data); \
594 : if (ret < 0) \
595 : goto tlv_put_failure; \
596 : } while (0)
597 :
598 : #define TLV_PUT_INT(sctx, attrtype, bits, value) \
599 : do { \
600 : ret = tlv_put_u##bits(sctx, attrtype, value); \
601 : if (ret < 0) \
602 : goto tlv_put_failure; \
603 : } while (0)
604 :
605 : #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
606 : #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
607 : #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
608 : #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
609 : #define TLV_PUT_STRING(sctx, attrtype, str, len) \
610 : do { \
611 : ret = tlv_put_string(sctx, attrtype, str, len); \
612 : if (ret < 0) \
613 : goto tlv_put_failure; \
614 : } while (0)
615 : #define TLV_PUT_PATH(sctx, attrtype, p) \
616 : do { \
617 : ret = tlv_put_string(sctx, attrtype, p->start, \
618 : p->end - p->start); \
619 : if (ret < 0) \
620 : goto tlv_put_failure; \
621 : } while(0)
622 : #define TLV_PUT_UUID(sctx, attrtype, uuid) \
623 : do { \
624 : ret = tlv_put_uuid(sctx, attrtype, uuid); \
625 : if (ret < 0) \
626 : goto tlv_put_failure; \
627 : } while (0)
628 : #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
629 : do { \
630 : ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
631 : if (ret < 0) \
632 : goto tlv_put_failure; \
633 : } while (0)
634 :
635 39 : static int send_header(struct send_ctx *sctx)
636 : {
637 : struct btrfs_stream_header hdr;
638 :
639 39 : strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
640 39 : hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
641 :
642 39 : return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
643 : &sctx->send_off);
644 : }
645 :
646 : /*
647 : * For each command/item we want to send to userspace, we call this function.
648 : */
649 23897 : static int begin_cmd(struct send_ctx *sctx, int cmd)
650 : {
651 : struct btrfs_cmd_header *hdr;
652 :
653 23897 : if (WARN_ON(!sctx->send_buf))
654 : return -EINVAL;
655 :
656 23897 : BUG_ON(sctx->send_size);
657 :
658 23897 : sctx->send_size += sizeof(*hdr);
659 23897 : hdr = (struct btrfs_cmd_header *)sctx->send_buf;
660 23897 : hdr->cmd = cpu_to_le16(cmd);
661 :
662 : return 0;
663 : }
664 :
665 23897 : static int send_cmd(struct send_ctx *sctx)
666 : {
667 : int ret;
668 : struct btrfs_cmd_header *hdr;
669 : u32 crc;
670 :
671 23897 : hdr = (struct btrfs_cmd_header *)sctx->send_buf;
672 23897 : hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
673 23897 : hdr->crc = 0;
674 :
675 23897 : crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
676 23897 : hdr->crc = cpu_to_le32(crc);
677 :
678 23897 : ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
679 : &sctx->send_off);
680 :
681 23897 : sctx->total_send_size += sctx->send_size;
682 23897 : sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
683 23897 : sctx->send_size = 0;
684 :
685 23897 : return ret;
686 : }
687 :
688 : /*
689 : * Sends a move instruction to user space
690 : */
691 290 : static int send_rename(struct send_ctx *sctx,
692 : struct fs_path *from, struct fs_path *to)
693 : {
694 : int ret;
695 :
696 290 : verbose_printk("btrfs: send_rename %s -> %s\n", from->start, to->start);
697 :
698 290 : ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
699 290 : if (ret < 0)
700 : goto out;
701 :
702 290 : TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
703 290 : TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
704 :
705 290 : ret = send_cmd(sctx);
706 :
707 : tlv_put_failure:
708 : out:
709 290 : return ret;
710 : }
711 :
712 : /*
713 : * Sends a link instruction to user space
714 : */
715 16 : static int send_link(struct send_ctx *sctx,
716 : struct fs_path *path, struct fs_path *lnk)
717 : {
718 : int ret;
719 :
720 16 : verbose_printk("btrfs: send_link %s -> %s\n", path->start, lnk->start);
721 :
722 16 : ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
723 16 : if (ret < 0)
724 : goto out;
725 :
726 16 : TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
727 16 : TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
728 :
729 16 : ret = send_cmd(sctx);
730 :
731 : tlv_put_failure:
732 : out:
733 16 : return ret;
734 : }
735 :
736 : /*
737 : * Sends an unlink instruction to user space
738 : */
739 17 : static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
740 : {
741 : int ret;
742 :
743 17 : verbose_printk("btrfs: send_unlink %s\n", path->start);
744 :
745 17 : ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
746 17 : if (ret < 0)
747 : goto out;
748 :
749 17 : TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
750 :
751 17 : ret = send_cmd(sctx);
752 :
753 : tlv_put_failure:
754 : out:
755 17 : return ret;
756 : }
757 :
758 : /*
759 : * Sends a rmdir instruction to user space
760 : */
761 6 : static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
762 : {
763 : int ret;
764 :
765 6 : verbose_printk("btrfs: send_rmdir %s\n", path->start);
766 :
767 6 : ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
768 6 : if (ret < 0)
769 : goto out;
770 :
771 6 : TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
772 :
773 6 : ret = send_cmd(sctx);
774 :
775 : tlv_put_failure:
776 : out:
777 6 : return ret;
778 : }
779 :
780 : /*
781 : * Helper function to retrieve some fields from an inode item.
782 : */
783 26228 : static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
784 : u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
785 : u64 *gid, u64 *rdev)
786 : {
787 : int ret;
788 : struct btrfs_inode_item *ii;
789 : struct btrfs_key key;
790 :
791 26228 : key.objectid = ino;
792 26228 : key.type = BTRFS_INODE_ITEM_KEY;
793 26228 : key.offset = 0;
794 26228 : ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
795 26228 : if (ret) {
796 176 : if (ret > 0)
797 : ret = -ENOENT;
798 176 : return ret;
799 : }
800 :
801 52104 : ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
802 : struct btrfs_inode_item);
803 26052 : if (size)
804 43146 : *size = btrfs_inode_size(path->nodes[0], ii);
805 26052 : if (gen)
806 7934 : *gen = btrfs_inode_generation(path->nodes[0], ii);
807 26052 : if (mode)
808 1062 : *mode = btrfs_inode_mode(path->nodes[0], ii);
809 26052 : if (uid)
810 1024 : *uid = btrfs_inode_uid(path->nodes[0], ii);
811 26052 : if (gid)
812 1024 : *gid = btrfs_inode_gid(path->nodes[0], ii);
813 26052 : if (rdev)
814 38 : *rdev = btrfs_inode_rdev(path->nodes[0], ii);
815 :
816 26052 : return ret;
817 : }
818 :
819 4655 : static int get_inode_info(struct btrfs_root *root,
820 : u64 ino, u64 *size, u64 *gen,
821 : u64 *mode, u64 *uid, u64 *gid,
822 : u64 *rdev)
823 : {
824 : struct btrfs_path *path;
825 : int ret;
826 :
827 : path = alloc_path_for_send();
828 4655 : if (!path)
829 : return -ENOMEM;
830 4655 : ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
831 : rdev);
832 4655 : btrfs_free_path(path);
833 4655 : return ret;
834 : }
835 :
836 : typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
837 : struct fs_path *p,
838 : void *ctx);
839 :
840 : /*
841 : * Helper function to iterate the entries in ONE btrfs_inode_ref or
842 : * btrfs_inode_extref.
843 : * The iterate callback may return a non zero value to stop iteration. This can
844 : * be a negative value for error codes or 1 to simply stop it.
845 : *
846 : * path must point to the INODE_REF or INODE_EXTREF when called.
847 : */
848 410 : static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
849 : struct btrfs_key *found_key, int resolve,
850 : iterate_inode_ref_t iterate, void *ctx)
851 : {
852 410 : struct extent_buffer *eb = path->nodes[0];
853 : struct btrfs_item *item;
854 : struct btrfs_inode_ref *iref;
855 : struct btrfs_inode_extref *extref;
856 : struct btrfs_path *tmp_path;
857 : struct fs_path *p;
858 : u32 cur = 0;
859 : u32 total;
860 410 : int slot = path->slots[0];
861 : u32 name_len;
862 : char *start;
863 : int ret = 0;
864 : int num = 0;
865 : int index;
866 : u64 dir;
867 : unsigned long name_off;
868 : unsigned long elem_size;
869 : unsigned long ptr;
870 :
871 410 : p = fs_path_alloc_reversed();
872 410 : if (!p)
873 : return -ENOMEM;
874 :
875 : tmp_path = alloc_path_for_send();
876 410 : if (!tmp_path) {
877 0 : fs_path_free(p);
878 : return -ENOMEM;
879 : }
880 :
881 :
882 410 : if (found_key->type == BTRFS_INODE_REF_KEY) {
883 409 : ptr = (unsigned long)btrfs_item_ptr(eb, slot,
884 : struct btrfs_inode_ref);
885 : item = btrfs_item_nr(slot);
886 : total = btrfs_item_size(eb, item);
887 : elem_size = sizeof(*iref);
888 : } else {
889 1 : ptr = btrfs_item_ptr_offset(eb, slot);
890 : total = btrfs_item_size_nr(eb, slot);
891 : elem_size = sizeof(*extref);
892 : }
893 :
894 818 : while (cur < total) {
895 : fs_path_reset(p);
896 :
897 413 : if (found_key->type == BTRFS_INODE_REF_KEY) {
898 412 : iref = (struct btrfs_inode_ref *)(ptr + cur);
899 412 : name_len = btrfs_inode_ref_name_len(eb, iref);
900 412 : name_off = (unsigned long)(iref + 1);
901 412 : index = btrfs_inode_ref_index(eb, iref);
902 412 : dir = found_key->offset;
903 : } else {
904 1 : extref = (struct btrfs_inode_extref *)(ptr + cur);
905 1 : name_len = btrfs_inode_extref_name_len(eb, extref);
906 1 : name_off = (unsigned long)&extref->name;
907 1 : index = btrfs_inode_extref_index(eb, extref);
908 : dir = btrfs_inode_extref_parent(eb, extref);
909 : }
910 :
911 413 : if (resolve) {
912 5 : start = btrfs_ref_to_path(root, tmp_path, name_len,
913 : name_off, eb, dir,
914 5 : p->buf, p->buf_len);
915 5 : if (IS_ERR(start)) {
916 0 : ret = PTR_ERR(start);
917 : goto out;
918 : }
919 5 : if (start < p->buf) {
920 : /* overflow , try again with larger buffer */
921 0 : ret = fs_path_ensure_buf(p,
922 0 : p->buf_len + p->buf - start);
923 0 : if (ret < 0)
924 : goto out;
925 0 : start = btrfs_ref_to_path(root, tmp_path,
926 : name_len, name_off,
927 : eb, dir,
928 0 : p->buf, p->buf_len);
929 0 : if (IS_ERR(start)) {
930 0 : ret = PTR_ERR(start);
931 : goto out;
932 : }
933 0 : BUG_ON(start < p->buf);
934 : }
935 5 : p->start = start;
936 : } else {
937 408 : ret = fs_path_add_from_extent_buffer(p, eb, name_off,
938 : name_len);
939 408 : if (ret < 0)
940 : goto out;
941 : }
942 :
943 413 : cur += elem_size + name_len;
944 413 : ret = iterate(num, dir, index, p, ctx);
945 413 : if (ret)
946 : goto out;
947 408 : num++;
948 : }
949 :
950 : out:
951 410 : btrfs_free_path(tmp_path);
952 410 : fs_path_free(p);
953 : return ret;
954 : }
955 :
956 : typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
957 : const char *name, int name_len,
958 : const char *data, int data_len,
959 : u8 type, void *ctx);
960 :
961 : /*
962 : * Helper function to iterate the entries in ONE btrfs_dir_item.
963 : * The iterate callback may return a non zero value to stop iteration. This can
964 : * be a negative value for error codes or 1 to simply stop it.
965 : *
966 : * path must point to the dir item when called.
967 : */
968 27 : static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
969 : struct btrfs_key *found_key,
970 : iterate_dir_item_t iterate, void *ctx)
971 : {
972 : int ret = 0;
973 : struct extent_buffer *eb;
974 : struct btrfs_item *item;
975 : struct btrfs_dir_item *di;
976 : struct btrfs_key di_key;
977 : char *buf = NULL;
978 : int buf_len;
979 : u32 name_len;
980 : u32 data_len;
981 : u32 cur;
982 : u32 len;
983 : u32 total;
984 : int slot;
985 : int num;
986 : u8 type;
987 :
988 27 : if (found_key->type == BTRFS_XATTR_ITEM_KEY)
989 27 : buf_len = BTRFS_MAX_XATTR_SIZE(root);
990 : else
991 : buf_len = PATH_MAX;
992 :
993 27 : buf = kmalloc(buf_len, GFP_NOFS);
994 27 : if (!buf) {
995 : ret = -ENOMEM;
996 : goto out;
997 : }
998 :
999 27 : eb = path->nodes[0];
1000 27 : slot = path->slots[0];
1001 : item = btrfs_item_nr(slot);
1002 27 : di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1003 : cur = 0;
1004 : len = 0;
1005 : total = btrfs_item_size(eb, item);
1006 :
1007 : num = 0;
1008 52 : while (cur < total) {
1009 27 : name_len = btrfs_dir_name_len(eb, di);
1010 27 : data_len = btrfs_dir_data_len(eb, di);
1011 : type = btrfs_dir_type(eb, di);
1012 27 : btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1013 :
1014 27 : if (type == BTRFS_FT_XATTR) {
1015 27 : if (name_len > XATTR_NAME_MAX) {
1016 : ret = -ENAMETOOLONG;
1017 : goto out;
1018 : }
1019 27 : if (name_len + data_len > buf_len) {
1020 : ret = -E2BIG;
1021 : goto out;
1022 : }
1023 : } else {
1024 : /*
1025 : * Path too long
1026 : */
1027 0 : if (name_len + data_len > buf_len) {
1028 : ret = -ENAMETOOLONG;
1029 : goto out;
1030 : }
1031 : }
1032 :
1033 27 : read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1034 27 : name_len + data_len);
1035 :
1036 27 : len = sizeof(*di) + name_len + data_len;
1037 27 : di = (struct btrfs_dir_item *)((char *)di + len);
1038 27 : cur += len;
1039 :
1040 27 : ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1041 : data_len, type, ctx);
1042 27 : if (ret < 0)
1043 : goto out;
1044 27 : if (ret) {
1045 : ret = 0;
1046 : goto out;
1047 : }
1048 :
1049 25 : num++;
1050 : }
1051 :
1052 : out:
1053 27 : kfree(buf);
1054 27 : return ret;
1055 : }
1056 :
1057 5 : static int __copy_first_ref(int num, u64 dir, int index,
1058 : struct fs_path *p, void *ctx)
1059 : {
1060 : int ret;
1061 : struct fs_path *pt = ctx;
1062 :
1063 5 : ret = fs_path_copy(pt, p);
1064 5 : if (ret < 0)
1065 0 : return ret;
1066 :
1067 : /* we want the first only */
1068 : return 1;
1069 : }
1070 :
1071 : /*
1072 : * Retrieve the first path of an inode. If an inode has more then one
1073 : * ref/hardlink, this is ignored.
1074 : */
1075 5 : static int get_inode_path(struct btrfs_root *root,
1076 : u64 ino, struct fs_path *path)
1077 : {
1078 : int ret;
1079 : struct btrfs_key key, found_key;
1080 5 : struct btrfs_path *p;
1081 :
1082 : p = alloc_path_for_send();
1083 5 : if (!p)
1084 : return -ENOMEM;
1085 :
1086 : fs_path_reset(path);
1087 :
1088 5 : key.objectid = ino;
1089 5 : key.type = BTRFS_INODE_REF_KEY;
1090 5 : key.offset = 0;
1091 :
1092 5 : ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1093 5 : if (ret < 0)
1094 : goto out;
1095 5 : if (ret) {
1096 : ret = 1;
1097 : goto out;
1098 : }
1099 5 : btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1100 10 : if (found_key.objectid != ino ||
1101 5 : (found_key.type != BTRFS_INODE_REF_KEY &&
1102 : found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1103 : ret = -ENOENT;
1104 : goto out;
1105 : }
1106 :
1107 5 : ret = iterate_inode_ref(root, p, &found_key, 1,
1108 : __copy_first_ref, path);
1109 5 : if (ret < 0)
1110 : goto out;
1111 : ret = 0;
1112 :
1113 : out:
1114 5 : btrfs_free_path(p);
1115 5 : return ret;
1116 : }
1117 :
1118 : struct backref_ctx {
1119 : struct send_ctx *sctx;
1120 :
1121 : struct btrfs_path *path;
1122 : /* number of total found references */
1123 : u64 found;
1124 :
1125 : /*
1126 : * used for clones found in send_root. clones found behind cur_objectid
1127 : * and cur_offset are not considered as allowed clones.
1128 : */
1129 : u64 cur_objectid;
1130 : u64 cur_offset;
1131 :
1132 : /* may be truncated in case it's the last extent in a file */
1133 : u64 extent_len;
1134 :
1135 : /* Just to check for bugs in backref resolving */
1136 : int found_itself;
1137 : };
1138 :
1139 570899 : static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1140 : {
1141 570899 : u64 root = (u64)(uintptr_t)key;
1142 : struct clone_root *cr = (struct clone_root *)elt;
1143 :
1144 570899 : if (root < cr->root->objectid)
1145 : return -1;
1146 539538 : if (root > cr->root->objectid)
1147 : return 1;
1148 21573 : return 0;
1149 : }
1150 :
1151 18 : static int __clone_root_cmp_sort(const void *e1, const void *e2)
1152 : {
1153 : struct clone_root *cr1 = (struct clone_root *)e1;
1154 : struct clone_root *cr2 = (struct clone_root *)e2;
1155 :
1156 18 : if (cr1->root->objectid < cr2->root->objectid)
1157 : return -1;
1158 1 : if (cr1->root->objectid > cr2->root->objectid)
1159 : return 1;
1160 0 : return 0;
1161 : }
1162 :
1163 : /*
1164 : * Called for every backref that is found for the current extent.
1165 : * Results are collected in sctx->clone_roots->ino/offset/found_refs
1166 : */
1167 570863 : static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1168 : {
1169 : struct backref_ctx *bctx = ctx_;
1170 : struct clone_root *found;
1171 : int ret;
1172 : u64 i_size;
1173 :
1174 : /* First check if the root is in the list of accepted clone sources */
1175 570863 : found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1176 570863 : bctx->sctx->clone_roots_cnt,
1177 : sizeof(struct clone_root),
1178 : __clone_root_cmp_bsearch);
1179 570863 : if (!found)
1180 : return 0;
1181 :
1182 43137 : if (found->root == bctx->sctx->send_root &&
1183 43128 : ino == bctx->cur_objectid &&
1184 21564 : offset == bctx->cur_offset) {
1185 21560 : bctx->found_itself = 1;
1186 : }
1187 :
1188 : /*
1189 : * There are inodes that have extents that lie behind its i_size. Don't
1190 : * accept clones from these extents.
1191 : */
1192 21573 : ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
1193 : NULL, NULL, NULL);
1194 21573 : btrfs_release_path(bctx->path);
1195 21573 : if (ret < 0)
1196 : return ret;
1197 :
1198 21573 : if (offset + bctx->extent_len > i_size)
1199 : return 0;
1200 :
1201 : /*
1202 : * Make sure we don't consider clones from send_root that are
1203 : * behind the current inode/offset.
1204 : */
1205 21570 : if (found->root == bctx->sctx->send_root) {
1206 : /*
1207 : * TODO for the moment we don't accept clones from the inode
1208 : * that is currently send. We may change this when
1209 : * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1210 : * file.
1211 : */
1212 21562 : if (ino >= bctx->cur_objectid)
1213 : return 0;
1214 : #if 0
1215 : if (ino > bctx->cur_objectid)
1216 : return 0;
1217 : if (offset + bctx->extent_len > bctx->cur_offset)
1218 : return 0;
1219 : #endif
1220 : }
1221 :
1222 8 : bctx->found++;
1223 8 : found->found_refs++;
1224 8 : if (ino < found->ino) {
1225 7 : found->ino = ino;
1226 7 : found->offset = offset;
1227 1 : } else if (found->ino == ino) {
1228 : /*
1229 : * same extent found more then once in the same file.
1230 : */
1231 1 : if (found->offset > offset + bctx->extent_len)
1232 0 : found->offset = offset;
1233 : }
1234 :
1235 : return 0;
1236 : }
1237 :
1238 : /*
1239 : * Given an inode, offset and extent item, it finds a good clone for a clone
1240 : * instruction. Returns -ENOENT when none could be found. The function makes
1241 : * sure that the returned clone is usable at the point where sending is at the
1242 : * moment. This means, that no clones are accepted which lie behind the current
1243 : * inode+offset.
1244 : *
1245 : * path must point to the extent item when called.
1246 : */
1247 21577 : static int find_extent_clone(struct send_ctx *sctx,
1248 : struct btrfs_path *path,
1249 : u64 ino, u64 data_offset,
1250 : u64 ino_size,
1251 : struct clone_root **found)
1252 : {
1253 : int ret;
1254 : int extent_type;
1255 : u64 logical;
1256 : u64 disk_byte;
1257 : u64 num_bytes;
1258 : u64 extent_item_pos;
1259 21577 : u64 flags = 0;
1260 : struct btrfs_file_extent_item *fi;
1261 21577 : struct extent_buffer *eb = path->nodes[0];
1262 : struct backref_ctx *backref_ctx = NULL;
1263 : struct clone_root *cur_clone_root;
1264 : struct btrfs_key found_key;
1265 : struct btrfs_path *tmp_path;
1266 : int compressed;
1267 : u32 i;
1268 :
1269 : tmp_path = alloc_path_for_send();
1270 21577 : if (!tmp_path)
1271 : return -ENOMEM;
1272 :
1273 : /* We only use this path under the commit sem */
1274 21577 : tmp_path->need_commit_sem = 0;
1275 :
1276 : backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_NOFS);
1277 21577 : if (!backref_ctx) {
1278 : ret = -ENOMEM;
1279 : goto out;
1280 : }
1281 :
1282 21577 : backref_ctx->path = tmp_path;
1283 :
1284 21577 : if (data_offset >= ino_size) {
1285 : /*
1286 : * There may be extents that lie behind the file's size.
1287 : * I at least had this in combination with snapshotting while
1288 : * writing large files.
1289 : */
1290 : ret = 0;
1291 : goto out;
1292 : }
1293 :
1294 43150 : fi = btrfs_item_ptr(eb, path->slots[0],
1295 : struct btrfs_file_extent_item);
1296 : extent_type = btrfs_file_extent_type(eb, fi);
1297 21575 : if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1298 : ret = -ENOENT;
1299 : goto out;
1300 : }
1301 21561 : compressed = btrfs_file_extent_compression(eb, fi);
1302 :
1303 : num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1304 : disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1305 21561 : if (disk_byte == 0) {
1306 : ret = -ENOENT;
1307 : goto out;
1308 : }
1309 21560 : logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1310 :
1311 21560 : down_read(&sctx->send_root->fs_info->commit_root_sem);
1312 21560 : ret = extent_from_logical(sctx->send_root->fs_info, disk_byte, tmp_path,
1313 : &found_key, &flags);
1314 21560 : up_read(&sctx->send_root->fs_info->commit_root_sem);
1315 21560 : btrfs_release_path(tmp_path);
1316 :
1317 21560 : if (ret < 0)
1318 : goto out;
1319 21560 : if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1320 : ret = -EIO;
1321 : goto out;
1322 : }
1323 :
1324 : /*
1325 : * Setup the clone roots.
1326 : */
1327 21591 : for (i = 0; i < sctx->clone_roots_cnt; i++) {
1328 21591 : cur_clone_root = sctx->clone_roots + i;
1329 21591 : cur_clone_root->ino = (u64)-1;
1330 21591 : cur_clone_root->offset = 0;
1331 21591 : cur_clone_root->found_refs = 0;
1332 : }
1333 :
1334 21560 : backref_ctx->sctx = sctx;
1335 21560 : backref_ctx->found = 0;
1336 21560 : backref_ctx->cur_objectid = ino;
1337 21560 : backref_ctx->cur_offset = data_offset;
1338 21560 : backref_ctx->found_itself = 0;
1339 21560 : backref_ctx->extent_len = num_bytes;
1340 :
1341 : /*
1342 : * The last extent of a file may be too large due to page alignment.
1343 : * We need to adjust extent_len in this case so that the checks in
1344 : * __iterate_backrefs work.
1345 : */
1346 21560 : if (data_offset + num_bytes >= ino_size)
1347 19 : backref_ctx->extent_len = ino_size - data_offset;
1348 :
1349 : /*
1350 : * Now collect all backrefs.
1351 : */
1352 21560 : if (compressed == BTRFS_COMPRESS_NONE)
1353 21550 : extent_item_pos = logical - found_key.objectid;
1354 : else
1355 : extent_item_pos = 0;
1356 21560 : ret = iterate_extent_inodes(sctx->send_root->fs_info,
1357 : found_key.objectid, extent_item_pos, 1,
1358 : __iterate_backrefs, backref_ctx);
1359 :
1360 21560 : if (ret < 0)
1361 : goto out;
1362 :
1363 21560 : if (!backref_ctx->found_itself) {
1364 : /* found a bug in backref code? */
1365 : ret = -EIO;
1366 0 : btrfs_err(sctx->send_root->fs_info, "did not find backref in "
1367 : "send_root. inode=%llu, offset=%llu, "
1368 : "disk_byte=%llu found extent=%llu",
1369 : ino, data_offset, disk_byte, found_key.objectid);
1370 : goto out;
1371 : }
1372 :
1373 21560 : verbose_printk(KERN_DEBUG "btrfs: find_extent_clone: data_offset=%llu, "
1374 : "ino=%llu, "
1375 : "num_bytes=%llu, logical=%llu\n",
1376 : data_offset, ino, num_bytes, logical);
1377 :
1378 21560 : if (!backref_ctx->found)
1379 21553 : verbose_printk("btrfs: no clones found\n");
1380 :
1381 : cur_clone_root = NULL;
1382 21591 : for (i = 0; i < sctx->clone_roots_cnt; i++) {
1383 21591 : if (sctx->clone_roots[i].found_refs) {
1384 7 : if (!cur_clone_root)
1385 : cur_clone_root = sctx->clone_roots + i;
1386 0 : else if (sctx->clone_roots[i].root == sctx->send_root)
1387 : /* prefer clones from send_root over others */
1388 : cur_clone_root = sctx->clone_roots + i;
1389 : }
1390 :
1391 : }
1392 :
1393 21560 : if (cur_clone_root) {
1394 7 : if (compressed != BTRFS_COMPRESS_NONE) {
1395 : /*
1396 : * Offsets given by iterate_extent_inodes() are relative
1397 : * to the start of the extent, we need to add logical
1398 : * offset from the file extent item.
1399 : * (See why at backref.c:check_extent_in_eb())
1400 : */
1401 8 : cur_clone_root->offset += btrfs_file_extent_offset(eb,
1402 : fi);
1403 : }
1404 7 : *found = cur_clone_root;
1405 : ret = 0;
1406 : } else {
1407 : ret = -ENOENT;
1408 : }
1409 :
1410 : out:
1411 21577 : btrfs_free_path(tmp_path);
1412 21577 : kfree(backref_ctx);
1413 : return ret;
1414 : }
1415 :
1416 12 : static int read_symlink(struct btrfs_root *root,
1417 : u64 ino,
1418 : struct fs_path *dest)
1419 : {
1420 : int ret;
1421 : struct btrfs_path *path;
1422 : struct btrfs_key key;
1423 : struct btrfs_file_extent_item *ei;
1424 : u8 type;
1425 : u8 compression;
1426 : unsigned long off;
1427 : int len;
1428 :
1429 : path = alloc_path_for_send();
1430 12 : if (!path)
1431 : return -ENOMEM;
1432 :
1433 12 : key.objectid = ino;
1434 12 : key.type = BTRFS_EXTENT_DATA_KEY;
1435 12 : key.offset = 0;
1436 12 : ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1437 12 : if (ret < 0)
1438 : goto out;
1439 12 : BUG_ON(ret);
1440 :
1441 24 : ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1442 : struct btrfs_file_extent_item);
1443 12 : type = btrfs_file_extent_type(path->nodes[0], ei);
1444 12 : compression = btrfs_file_extent_compression(path->nodes[0], ei);
1445 12 : BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1446 12 : BUG_ON(compression);
1447 :
1448 : off = btrfs_file_extent_inline_start(ei);
1449 12 : len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
1450 :
1451 12 : ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1452 :
1453 : out:
1454 12 : btrfs_free_path(path);
1455 12 : return ret;
1456 : }
1457 :
1458 : /*
1459 : * Helper function to generate a file name that is unique in the root of
1460 : * send_root and parent_root. This is used to generate names for orphan inodes.
1461 : */
1462 505 : static int gen_unique_name(struct send_ctx *sctx,
1463 : u64 ino, u64 gen,
1464 : struct fs_path *dest)
1465 : {
1466 : int ret = 0;
1467 : struct btrfs_path *path;
1468 : struct btrfs_dir_item *di;
1469 : char tmp[64];
1470 : int len;
1471 : u64 idx = 0;
1472 :
1473 : path = alloc_path_for_send();
1474 505 : if (!path)
1475 : return -ENOMEM;
1476 :
1477 : while (1) {
1478 505 : len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1479 : ino, gen, idx);
1480 : ASSERT(len < sizeof(tmp));
1481 :
1482 505 : di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1483 : path, BTRFS_FIRST_FREE_OBJECTID,
1484 505 : tmp, strlen(tmp), 0);
1485 505 : btrfs_release_path(path);
1486 505 : if (IS_ERR(di)) {
1487 0 : ret = PTR_ERR(di);
1488 : goto out;
1489 : }
1490 505 : if (di) {
1491 : /* not unique, try again */
1492 0 : idx++;
1493 0 : continue;
1494 : }
1495 :
1496 505 : if (!sctx->parent_root) {
1497 : /* unique */
1498 : ret = 0;
1499 : break;
1500 : }
1501 :
1502 104 : di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1503 : path, BTRFS_FIRST_FREE_OBJECTID,
1504 104 : tmp, strlen(tmp), 0);
1505 104 : btrfs_release_path(path);
1506 104 : if (IS_ERR(di)) {
1507 0 : ret = PTR_ERR(di);
1508 : goto out;
1509 : }
1510 104 : if (di) {
1511 : /* not unique, try again */
1512 0 : idx++;
1513 0 : continue;
1514 : }
1515 : /* unique */
1516 : break;
1517 : }
1518 :
1519 505 : ret = fs_path_add(dest, tmp, strlen(tmp));
1520 :
1521 : out:
1522 505 : btrfs_free_path(path);
1523 : return ret;
1524 : }
1525 :
1526 : enum inode_state {
1527 : inode_state_no_change,
1528 : inode_state_will_create,
1529 : inode_state_did_create,
1530 : inode_state_will_delete,
1531 : inode_state_did_delete,
1532 : };
1533 :
1534 1545 : static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1535 : {
1536 : int ret;
1537 : int left_ret;
1538 : int right_ret;
1539 : u64 left_gen;
1540 : u64 right_gen;
1541 :
1542 1545 : ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1543 : NULL, NULL);
1544 1545 : if (ret < 0 && ret != -ENOENT)
1545 : goto out;
1546 : left_ret = ret;
1547 :
1548 1545 : if (!sctx->parent_root) {
1549 : right_ret = -ENOENT;
1550 : } else {
1551 955 : ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1552 : NULL, NULL, NULL, NULL);
1553 955 : if (ret < 0 && ret != -ENOENT)
1554 : goto out;
1555 : right_ret = ret;
1556 : }
1557 :
1558 1545 : if (!left_ret && !right_ret) {
1559 789 : if (left_gen == gen && right_gen == gen) {
1560 : ret = inode_state_no_change;
1561 0 : } else if (left_gen == gen) {
1562 0 : if (ino < sctx->send_progress)
1563 : ret = inode_state_did_create;
1564 : else
1565 : ret = inode_state_will_create;
1566 0 : } else if (right_gen == gen) {
1567 0 : if (ino < sctx->send_progress)
1568 : ret = inode_state_did_delete;
1569 : else
1570 : ret = inode_state_will_delete;
1571 : } else {
1572 : ret = -ENOENT;
1573 : }
1574 756 : } else if (!left_ret) {
1575 700 : if (left_gen == gen) {
1576 700 : if (ino < sctx->send_progress)
1577 : ret = inode_state_did_create;
1578 : else
1579 : ret = inode_state_will_create;
1580 : } else {
1581 : ret = -ENOENT;
1582 : }
1583 56 : } else if (!right_ret) {
1584 56 : if (right_gen == gen) {
1585 56 : if (ino < sctx->send_progress)
1586 : ret = inode_state_did_delete;
1587 : else
1588 : ret = inode_state_will_delete;
1589 : } else {
1590 : ret = -ENOENT;
1591 : }
1592 : } else {
1593 : ret = -ENOENT;
1594 : }
1595 :
1596 : out:
1597 1545 : return ret;
1598 : }
1599 :
1600 921 : static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1601 : {
1602 : int ret;
1603 :
1604 921 : ret = get_cur_inode_state(sctx, ino, gen);
1605 921 : if (ret < 0)
1606 : goto out;
1607 :
1608 1842 : if (ret == inode_state_no_change ||
1609 996 : ret == inode_state_did_create ||
1610 : ret == inode_state_will_delete)
1611 : ret = 1;
1612 : else
1613 : ret = 0;
1614 :
1615 : out:
1616 921 : return ret;
1617 : }
1618 :
1619 : /*
1620 : * Helper function to lookup a dir item in a dir.
1621 : */
1622 405 : static int lookup_dir_item_inode(struct btrfs_root *root,
1623 : u64 dir, const char *name, int name_len,
1624 : u64 *found_inode,
1625 : u8 *found_type)
1626 : {
1627 : int ret = 0;
1628 : struct btrfs_dir_item *di;
1629 : struct btrfs_key key;
1630 : struct btrfs_path *path;
1631 :
1632 : path = alloc_path_for_send();
1633 405 : if (!path)
1634 : return -ENOMEM;
1635 :
1636 405 : di = btrfs_lookup_dir_item(NULL, root, path,
1637 : dir, name, name_len, 0);
1638 405 : if (!di) {
1639 : ret = -ENOENT;
1640 : goto out;
1641 : }
1642 184 : if (IS_ERR(di)) {
1643 0 : ret = PTR_ERR(di);
1644 0 : goto out;
1645 : }
1646 184 : btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1647 184 : if (key.type == BTRFS_ROOT_ITEM_KEY) {
1648 : ret = -ENOENT;
1649 : goto out;
1650 : }
1651 181 : *found_inode = key.objectid;
1652 362 : *found_type = btrfs_dir_type(path->nodes[0], di);
1653 :
1654 : out:
1655 405 : btrfs_free_path(path);
1656 405 : return ret;
1657 : }
1658 :
1659 : /*
1660 : * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1661 : * generation of the parent dir and the name of the dir entry.
1662 : */
1663 880 : static int get_first_ref(struct btrfs_root *root, u64 ino,
1664 : u64 *dir, u64 *dir_gen, struct fs_path *name)
1665 : {
1666 : int ret;
1667 : struct btrfs_key key;
1668 : struct btrfs_key found_key;
1669 : struct btrfs_path *path;
1670 : int len;
1671 : u64 parent_dir;
1672 :
1673 : path = alloc_path_for_send();
1674 880 : if (!path)
1675 : return -ENOMEM;
1676 :
1677 880 : key.objectid = ino;
1678 880 : key.type = BTRFS_INODE_REF_KEY;
1679 880 : key.offset = 0;
1680 :
1681 880 : ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1682 880 : if (ret < 0)
1683 : goto out;
1684 880 : if (!ret)
1685 873 : btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1686 : path->slots[0]);
1687 1753 : if (ret || found_key.objectid != ino ||
1688 873 : (found_key.type != BTRFS_INODE_REF_KEY &&
1689 : found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1690 : ret = -ENOENT;
1691 : goto out;
1692 : }
1693 :
1694 873 : if (found_key.type == BTRFS_INODE_REF_KEY) {
1695 : struct btrfs_inode_ref *iref;
1696 1744 : iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1697 : struct btrfs_inode_ref);
1698 1744 : len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1699 872 : ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1700 872 : (unsigned long)(iref + 1),
1701 : len);
1702 872 : parent_dir = found_key.offset;
1703 : } else {
1704 : struct btrfs_inode_extref *extref;
1705 2 : extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1706 : struct btrfs_inode_extref);
1707 2 : len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1708 1 : ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1709 1 : (unsigned long)&extref->name, len);
1710 1 : parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1711 : }
1712 873 : if (ret < 0)
1713 : goto out;
1714 873 : btrfs_release_path(path);
1715 :
1716 873 : if (dir_gen) {
1717 738 : ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1718 : NULL, NULL, NULL);
1719 738 : if (ret < 0)
1720 : goto out;
1721 : }
1722 :
1723 873 : *dir = parent_dir;
1724 :
1725 : out:
1726 880 : btrfs_free_path(path);
1727 880 : return ret;
1728 : }
1729 :
1730 0 : static int is_first_ref(struct btrfs_root *root,
1731 : u64 ino, u64 dir,
1732 : const char *name, int name_len)
1733 : {
1734 : int ret;
1735 : struct fs_path *tmp_name;
1736 : u64 tmp_dir;
1737 :
1738 0 : tmp_name = fs_path_alloc();
1739 0 : if (!tmp_name)
1740 : return -ENOMEM;
1741 :
1742 0 : ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1743 0 : if (ret < 0)
1744 : goto out;
1745 :
1746 0 : if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1747 : ret = 0;
1748 : goto out;
1749 : }
1750 :
1751 0 : ret = !memcmp(tmp_name->start, name, name_len);
1752 :
1753 : out:
1754 0 : fs_path_free(tmp_name);
1755 0 : return ret;
1756 : }
1757 :
1758 : /*
1759 : * Used by process_recorded_refs to determine if a new ref would overwrite an
1760 : * already existing ref. In case it detects an overwrite, it returns the
1761 : * inode/gen in who_ino/who_gen.
1762 : * When an overwrite is detected, process_recorded_refs does proper orphanizing
1763 : * to make sure later references to the overwritten inode are possible.
1764 : * Orphanizing is however only required for the first ref of an inode.
1765 : * process_recorded_refs does an additional is_first_ref check to see if
1766 : * orphanizing is really required.
1767 : */
1768 301 : static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1769 : const char *name, int name_len,
1770 : u64 *who_ino, u64 *who_gen)
1771 : {
1772 : int ret = 0;
1773 : u64 gen;
1774 301 : u64 other_inode = 0;
1775 301 : u8 other_type = 0;
1776 :
1777 301 : if (!sctx->parent_root)
1778 : goto out;
1779 :
1780 103 : ret = is_inode_existent(sctx, dir, dir_gen);
1781 103 : if (ret <= 0)
1782 : goto out;
1783 :
1784 : /*
1785 : * If we have a parent root we need to verify that the parent dir was
1786 : * not delted and then re-created, if it was then we have no overwrite
1787 : * and we can just unlink this entry.
1788 : */
1789 94 : if (sctx->parent_root) {
1790 94 : ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1791 : NULL, NULL, NULL);
1792 94 : if (ret < 0 && ret != -ENOENT)
1793 : goto out;
1794 94 : if (ret) {
1795 : ret = 0;
1796 : goto out;
1797 : }
1798 84 : if (gen != dir_gen)
1799 : goto out;
1800 : }
1801 :
1802 84 : ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1803 : &other_inode, &other_type);
1804 84 : if (ret < 0 && ret != -ENOENT)
1805 : goto out;
1806 84 : if (ret) {
1807 : ret = 0;
1808 : goto out;
1809 : }
1810 :
1811 : /*
1812 : * Check if the overwritten ref was already processed. If yes, the ref
1813 : * was already unlinked/moved, so we can safely assume that we will not
1814 : * overwrite anything at this point in time.
1815 : */
1816 1 : if (other_inode > sctx->send_progress) {
1817 0 : ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1818 : who_gen, NULL, NULL, NULL, NULL);
1819 0 : if (ret < 0)
1820 : goto out;
1821 :
1822 : ret = 1;
1823 0 : *who_ino = other_inode;
1824 : } else {
1825 : ret = 0;
1826 : }
1827 :
1828 : out:
1829 301 : return ret;
1830 : }
1831 :
1832 : /*
1833 : * Checks if the ref was overwritten by an already processed inode. This is
1834 : * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1835 : * thus the orphan name needs be used.
1836 : * process_recorded_refs also uses it to avoid unlinking of refs that were
1837 : * overwritten.
1838 : */
1839 542 : static int did_overwrite_ref(struct send_ctx *sctx,
1840 : u64 dir, u64 dir_gen,
1841 : u64 ino, u64 ino_gen,
1842 : const char *name, int name_len)
1843 : {
1844 : int ret = 0;
1845 : u64 gen;
1846 : u64 ow_inode;
1847 : u8 other_type;
1848 :
1849 542 : if (!sctx->parent_root)
1850 : goto out;
1851 :
1852 347 : ret = is_inode_existent(sctx, dir, dir_gen);
1853 347 : if (ret <= 0)
1854 : goto out;
1855 :
1856 : /* check if the ref was overwritten by another ref */
1857 321 : ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1858 : &ow_inode, &other_type);
1859 321 : if (ret < 0 && ret != -ENOENT)
1860 : goto out;
1861 321 : if (ret) {
1862 : /* was never and will never be overwritten */
1863 : ret = 0;
1864 : goto out;
1865 : }
1866 :
1867 180 : ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1868 : NULL, NULL);
1869 180 : if (ret < 0)
1870 : goto out;
1871 :
1872 180 : if (ow_inode == ino && gen == ino_gen) {
1873 : ret = 0;
1874 : goto out;
1875 : }
1876 :
1877 : /* we know that it is or will be overwritten. check this now */
1878 2 : if (ow_inode < sctx->send_progress)
1879 : ret = 1;
1880 : else
1881 : ret = 0;
1882 :
1883 : out:
1884 542 : return ret;
1885 : }
1886 :
1887 : /*
1888 : * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1889 : * that got overwritten. This is used by process_recorded_refs to determine
1890 : * if it has to use the path as returned by get_cur_path or the orphan name.
1891 : */
1892 77 : static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1893 : {
1894 : int ret = 0;
1895 : struct fs_path *name = NULL;
1896 : u64 dir;
1897 : u64 dir_gen;
1898 :
1899 77 : if (!sctx->parent_root)
1900 : goto out;
1901 :
1902 77 : name = fs_path_alloc();
1903 77 : if (!name)
1904 : return -ENOMEM;
1905 :
1906 77 : ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1907 77 : if (ret < 0)
1908 : goto out;
1909 :
1910 77 : ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1911 : name->start, fs_path_len(name));
1912 :
1913 : out:
1914 77 : fs_path_free(name);
1915 77 : return ret;
1916 : }
1917 :
1918 : /*
1919 : * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1920 : * so we need to do some special handling in case we have clashes. This function
1921 : * takes care of this with the help of name_cache_entry::radix_list.
1922 : * In case of error, nce is kfreed.
1923 : */
1924 471 : static int name_cache_insert(struct send_ctx *sctx,
1925 : struct name_cache_entry *nce)
1926 : {
1927 : int ret = 0;
1928 : struct list_head *nce_head;
1929 :
1930 471 : nce_head = radix_tree_lookup(&sctx->name_cache,
1931 471 : (unsigned long)nce->ino);
1932 471 : if (!nce_head) {
1933 : nce_head = kmalloc(sizeof(*nce_head), GFP_NOFS);
1934 471 : if (!nce_head) {
1935 0 : kfree(nce);
1936 0 : return -ENOMEM;
1937 : }
1938 : INIT_LIST_HEAD(nce_head);
1939 :
1940 471 : ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
1941 471 : if (ret < 0) {
1942 0 : kfree(nce_head);
1943 0 : kfree(nce);
1944 0 : return ret;
1945 : }
1946 : }
1947 471 : list_add_tail(&nce->radix_list, nce_head);
1948 471 : list_add_tail(&nce->list, &sctx->name_cache_list);
1949 471 : sctx->name_cache_size++;
1950 :
1951 471 : return ret;
1952 : }
1953 :
1954 471 : static void name_cache_delete(struct send_ctx *sctx,
1955 : struct name_cache_entry *nce)
1956 : {
1957 : struct list_head *nce_head;
1958 :
1959 471 : nce_head = radix_tree_lookup(&sctx->name_cache,
1960 471 : (unsigned long)nce->ino);
1961 471 : if (!nce_head) {
1962 0 : btrfs_err(sctx->send_root->fs_info,
1963 : "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
1964 : nce->ino, sctx->name_cache_size);
1965 : }
1966 :
1967 471 : list_del(&nce->radix_list);
1968 471 : list_del(&nce->list);
1969 471 : sctx->name_cache_size--;
1970 :
1971 : /*
1972 : * We may not get to the final release of nce_head if the lookup fails
1973 : */
1974 942 : if (nce_head && list_empty(nce_head)) {
1975 471 : radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
1976 471 : kfree(nce_head);
1977 : }
1978 471 : }
1979 :
1980 28274 : static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
1981 : u64 ino, u64 gen)
1982 : {
1983 : struct list_head *nce_head;
1984 : struct name_cache_entry *cur;
1985 :
1986 28274 : nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
1987 28274 : if (!nce_head)
1988 : return NULL;
1989 :
1990 27909 : list_for_each_entry(cur, nce_head, radix_list) {
1991 27909 : if (cur->ino == ino && cur->gen == gen)
1992 : return cur;
1993 : }
1994 : return NULL;
1995 : }
1996 :
1997 : /*
1998 : * Removes the entry from the list and adds it back to the end. This marks the
1999 : * entry as recently used so that name_cache_clean_unused does not remove it.
2000 : */
2001 27803 : static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2002 : {
2003 27803 : list_del(&nce->list);
2004 27803 : list_add_tail(&nce->list, &sctx->name_cache_list);
2005 27803 : }
2006 :
2007 : /*
2008 : * Remove some entries from the beginning of name_cache_list.
2009 : */
2010 471 : static void name_cache_clean_unused(struct send_ctx *sctx)
2011 : {
2012 : struct name_cache_entry *nce;
2013 :
2014 471 : if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2015 471 : return;
2016 :
2017 0 : while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2018 0 : nce = list_entry(sctx->name_cache_list.next,
2019 : struct name_cache_entry, list);
2020 0 : name_cache_delete(sctx, nce);
2021 0 : kfree(nce);
2022 : }
2023 : }
2024 :
2025 39 : static void name_cache_free(struct send_ctx *sctx)
2026 : {
2027 : struct name_cache_entry *nce;
2028 :
2029 847 : while (!list_empty(&sctx->name_cache_list)) {
2030 : nce = list_entry(sctx->name_cache_list.next,
2031 : struct name_cache_entry, list);
2032 365 : name_cache_delete(sctx, nce);
2033 365 : kfree(nce);
2034 : }
2035 39 : }
2036 :
2037 : /*
2038 : * Used by get_cur_path for each ref up to the root.
2039 : * Returns 0 if it succeeded.
2040 : * Returns 1 if the inode is not existent or got overwritten. In that case, the
2041 : * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2042 : * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2043 : * Returns <0 in case of error.
2044 : */
2045 28274 : static int __get_cur_name_and_parent(struct send_ctx *sctx,
2046 : u64 ino, u64 gen,
2047 : u64 *parent_ino,
2048 : u64 *parent_gen,
2049 : struct fs_path *dest)
2050 : {
2051 : int ret;
2052 : int nce_ret;
2053 : struct name_cache_entry *nce = NULL;
2054 :
2055 : /*
2056 : * First check if we already did a call to this function with the same
2057 : * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2058 : * return the cached result.
2059 : */
2060 28274 : nce = name_cache_search(sctx, ino, gen);
2061 28274 : if (nce) {
2062 27909 : if (ino < sctx->send_progress && nce->need_later_update) {
2063 106 : name_cache_delete(sctx, nce);
2064 106 : kfree(nce);
2065 106 : nce = NULL;
2066 : } else {
2067 27803 : name_cache_used(sctx, nce);
2068 27803 : *parent_ino = nce->parent_ino;
2069 27803 : *parent_gen = nce->parent_gen;
2070 27803 : ret = fs_path_add(dest, nce->name, nce->name_len);
2071 27803 : if (ret < 0)
2072 : goto out;
2073 27803 : ret = nce->ret;
2074 27803 : goto out;
2075 : }
2076 : }
2077 :
2078 : /*
2079 : * If the inode is not existent yet, add the orphan name and return 1.
2080 : * This should only happen for the parent dir that we determine in
2081 : * __record_new_ref
2082 : */
2083 471 : ret = is_inode_existent(sctx, ino, gen);
2084 471 : if (ret < 0)
2085 : goto out;
2086 :
2087 471 : if (!ret) {
2088 23 : ret = gen_unique_name(sctx, ino, gen, dest);
2089 23 : if (ret < 0)
2090 : goto out;
2091 : ret = 1;
2092 : goto out_cache;
2093 : }
2094 :
2095 : /*
2096 : * Depending on whether the inode was already processed or not, use
2097 : * send_root or parent_root for ref lookup.
2098 : */
2099 448 : if (ino < sctx->send_progress)
2100 353 : ret = get_first_ref(sctx->send_root, ino,
2101 : parent_ino, parent_gen, dest);
2102 : else
2103 95 : ret = get_first_ref(sctx->parent_root, ino,
2104 : parent_ino, parent_gen, dest);
2105 448 : if (ret < 0)
2106 : goto out;
2107 :
2108 : /*
2109 : * Check if the ref was overwritten by an inode's ref that was processed
2110 : * earlier. If yes, treat as orphan and return 1.
2111 : */
2112 448 : ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2113 448 : dest->start, dest->end - dest->start);
2114 448 : if (ret < 0)
2115 : goto out;
2116 448 : if (ret) {
2117 : fs_path_reset(dest);
2118 0 : ret = gen_unique_name(sctx, ino, gen, dest);
2119 0 : if (ret < 0)
2120 : goto out;
2121 : ret = 1;
2122 : }
2123 :
2124 : out_cache:
2125 : /*
2126 : * Store the result of the lookup in the name cache.
2127 : */
2128 471 : nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_NOFS);
2129 471 : if (!nce) {
2130 : ret = -ENOMEM;
2131 : goto out;
2132 : }
2133 :
2134 471 : nce->ino = ino;
2135 471 : nce->gen = gen;
2136 471 : nce->parent_ino = *parent_ino;
2137 471 : nce->parent_gen = *parent_gen;
2138 471 : nce->name_len = fs_path_len(dest);
2139 471 : nce->ret = ret;
2140 471 : strcpy(nce->name, dest->start);
2141 :
2142 471 : if (ino < sctx->send_progress)
2143 357 : nce->need_later_update = 0;
2144 : else
2145 114 : nce->need_later_update = 1;
2146 :
2147 471 : nce_ret = name_cache_insert(sctx, nce);
2148 471 : if (nce_ret < 0)
2149 : ret = nce_ret;
2150 471 : name_cache_clean_unused(sctx);
2151 :
2152 : out:
2153 28274 : return ret;
2154 : }
2155 :
2156 : /*
2157 : * Magic happens here. This function returns the first ref to an inode as it
2158 : * would look like while receiving the stream at this point in time.
2159 : * We walk the path up to the root. For every inode in between, we check if it
2160 : * was already processed/sent. If yes, we continue with the parent as found
2161 : * in send_root. If not, we continue with the parent as found in parent_root.
2162 : * If we encounter an inode that was deleted at this point in time, we use the
2163 : * inodes "orphan" name instead of the real name and stop. Same with new inodes
2164 : * that were not created yet and overwritten inodes/refs.
2165 : *
2166 : * When do we have have orphan inodes:
2167 : * 1. When an inode is freshly created and thus no valid refs are available yet
2168 : * 2. When a directory lost all it's refs (deleted) but still has dir items
2169 : * inside which were not processed yet (pending for move/delete). If anyone
2170 : * tried to get the path to the dir items, it would get a path inside that
2171 : * orphan directory.
2172 : * 3. When an inode is moved around or gets new links, it may overwrite the ref
2173 : * of an unprocessed inode. If in that case the first ref would be
2174 : * overwritten, the overwritten inode gets "orphanized". Later when we
2175 : * process this overwritten inode, it is restored at a new place by moving
2176 : * the orphan inode.
2177 : *
2178 : * sctx->send_progress tells this function at which point in time receiving
2179 : * would be.
2180 : */
2181 23795 : static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2182 : struct fs_path *dest)
2183 : {
2184 : int ret = 0;
2185 : struct fs_path *name = NULL;
2186 23795 : u64 parent_inode = 0;
2187 23795 : u64 parent_gen = 0;
2188 : int stop = 0;
2189 :
2190 23795 : name = fs_path_alloc();
2191 23795 : if (!name) {
2192 : ret = -ENOMEM;
2193 : goto out;
2194 : }
2195 :
2196 23795 : dest->reversed = 1;
2197 : fs_path_reset(dest);
2198 :
2199 52066 : while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2200 : fs_path_reset(name);
2201 :
2202 28286 : if (is_waiting_for_rm(sctx, ino)) {
2203 15 : ret = gen_unique_name(sctx, ino, gen, name);
2204 15 : if (ret < 0)
2205 : goto out;
2206 15 : ret = fs_path_add_path(dest, name);
2207 15 : break;
2208 : }
2209 :
2210 28271 : if (is_waiting_for_move(sctx, ino)) {
2211 172 : ret = get_first_ref(sctx->parent_root, ino,
2212 : &parent_inode, &parent_gen, name);
2213 : } else {
2214 28099 : ret = __get_cur_name_and_parent(sctx, ino, gen,
2215 : &parent_inode,
2216 : &parent_gen, name);
2217 28099 : if (ret)
2218 : stop = 1;
2219 : }
2220 :
2221 28271 : if (ret < 0)
2222 : goto out;
2223 :
2224 28271 : ret = fs_path_add_path(dest, name);
2225 28271 : if (ret < 0)
2226 : goto out;
2227 :
2228 28271 : ino = parent_inode;
2229 28271 : gen = parent_gen;
2230 : }
2231 :
2232 : out:
2233 23795 : fs_path_free(name);
2234 23795 : if (!ret)
2235 23795 : fs_path_unreverse(dest);
2236 23795 : return ret;
2237 : }
2238 :
2239 : /*
2240 : * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2241 : */
2242 39 : static int send_subvol_begin(struct send_ctx *sctx)
2243 : {
2244 : int ret;
2245 39 : struct btrfs_root *send_root = sctx->send_root;
2246 39 : struct btrfs_root *parent_root = sctx->parent_root;
2247 : struct btrfs_path *path;
2248 : struct btrfs_key key;
2249 : struct btrfs_root_ref *ref;
2250 : struct extent_buffer *leaf;
2251 : char *name = NULL;
2252 : int namelen;
2253 :
2254 39 : path = btrfs_alloc_path();
2255 39 : if (!path)
2256 : return -ENOMEM;
2257 :
2258 : name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_NOFS);
2259 39 : if (!name) {
2260 0 : btrfs_free_path(path);
2261 0 : return -ENOMEM;
2262 : }
2263 :
2264 39 : key.objectid = send_root->objectid;
2265 39 : key.type = BTRFS_ROOT_BACKREF_KEY;
2266 39 : key.offset = 0;
2267 :
2268 39 : ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2269 : &key, path, 1, 0);
2270 39 : if (ret < 0)
2271 : goto out;
2272 39 : if (ret) {
2273 : ret = -ENOENT;
2274 : goto out;
2275 : }
2276 :
2277 39 : leaf = path->nodes[0];
2278 39 : btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2279 78 : if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2280 39 : key.objectid != send_root->objectid) {
2281 : ret = -ENOENT;
2282 : goto out;
2283 : }
2284 78 : ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2285 39 : namelen = btrfs_root_ref_name_len(leaf, ref);
2286 39 : read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2287 39 : btrfs_release_path(path);
2288 :
2289 39 : if (parent_root) {
2290 16 : ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2291 16 : if (ret < 0)
2292 : goto out;
2293 : } else {
2294 23 : ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2295 23 : if (ret < 0)
2296 : goto out;
2297 : }
2298 :
2299 39 : TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2300 78 : TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2301 : sctx->send_root->root_item.uuid);
2302 78 : TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2303 : le64_to_cpu(sctx->send_root->root_item.ctransid));
2304 39 : if (parent_root) {
2305 32 : TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2306 : sctx->parent_root->root_item.uuid);
2307 32 : TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2308 : le64_to_cpu(sctx->parent_root->root_item.ctransid));
2309 : }
2310 :
2311 39 : ret = send_cmd(sctx);
2312 :
2313 : tlv_put_failure:
2314 : out:
2315 39 : btrfs_free_path(path);
2316 39 : kfree(name);
2317 39 : return ret;
2318 : }
2319 :
2320 73 : static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2321 : {
2322 : int ret = 0;
2323 : struct fs_path *p;
2324 :
2325 73 : verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino, size);
2326 :
2327 73 : p = fs_path_alloc();
2328 73 : if (!p)
2329 : return -ENOMEM;
2330 :
2331 73 : ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2332 73 : if (ret < 0)
2333 : goto out;
2334 :
2335 73 : ret = get_cur_path(sctx, ino, gen, p);
2336 73 : if (ret < 0)
2337 : goto out;
2338 73 : TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2339 73 : TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2340 :
2341 73 : ret = send_cmd(sctx);
2342 :
2343 : tlv_put_failure:
2344 : out:
2345 73 : fs_path_free(p);
2346 73 : return ret;
2347 : }
2348 :
2349 243 : static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2350 : {
2351 : int ret = 0;
2352 : struct fs_path *p;
2353 :
2354 243 : verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino, mode);
2355 :
2356 243 : p = fs_path_alloc();
2357 243 : if (!p)
2358 : return -ENOMEM;
2359 :
2360 243 : ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2361 243 : if (ret < 0)
2362 : goto out;
2363 :
2364 243 : ret = get_cur_path(sctx, ino, gen, p);
2365 243 : if (ret < 0)
2366 : goto out;
2367 243 : TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2368 486 : TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2369 :
2370 243 : ret = send_cmd(sctx);
2371 :
2372 : tlv_put_failure:
2373 : out:
2374 243 : fs_path_free(p);
2375 243 : return ret;
2376 : }
2377 :
2378 256 : static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2379 : {
2380 : int ret = 0;
2381 : struct fs_path *p;
2382 :
2383 256 : verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino, uid, gid);
2384 :
2385 256 : p = fs_path_alloc();
2386 256 : if (!p)
2387 : return -ENOMEM;
2388 :
2389 256 : ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2390 256 : if (ret < 0)
2391 : goto out;
2392 :
2393 256 : ret = get_cur_path(sctx, ino, gen, p);
2394 256 : if (ret < 0)
2395 : goto out;
2396 256 : TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2397 256 : TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2398 256 : TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2399 :
2400 256 : ret = send_cmd(sctx);
2401 :
2402 : tlv_put_failure:
2403 : out:
2404 256 : fs_path_free(p);
2405 256 : return ret;
2406 : }
2407 :
2408 766 : static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2409 : {
2410 : int ret = 0;
2411 : struct fs_path *p = NULL;
2412 : struct btrfs_inode_item *ii;
2413 : struct btrfs_path *path = NULL;
2414 : struct extent_buffer *eb;
2415 : struct btrfs_key key;
2416 : int slot;
2417 :
2418 766 : verbose_printk("btrfs: send_utimes %llu\n", ino);
2419 :
2420 766 : p = fs_path_alloc();
2421 766 : if (!p)
2422 : return -ENOMEM;
2423 :
2424 : path = alloc_path_for_send();
2425 766 : if (!path) {
2426 : ret = -ENOMEM;
2427 : goto out;
2428 : }
2429 :
2430 766 : key.objectid = ino;
2431 766 : key.type = BTRFS_INODE_ITEM_KEY;
2432 766 : key.offset = 0;
2433 766 : ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2434 766 : if (ret < 0)
2435 : goto out;
2436 :
2437 766 : eb = path->nodes[0];
2438 766 : slot = path->slots[0];
2439 766 : ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2440 :
2441 766 : ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2442 766 : if (ret < 0)
2443 : goto out;
2444 :
2445 766 : ret = get_cur_path(sctx, ino, gen, p);
2446 766 : if (ret < 0)
2447 : goto out;
2448 766 : TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2449 766 : TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb,
2450 : btrfs_inode_atime(ii));
2451 766 : TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb,
2452 : btrfs_inode_mtime(ii));
2453 766 : TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb,
2454 : btrfs_inode_ctime(ii));
2455 : /* TODO Add otime support when the otime patches get into upstream */
2456 :
2457 766 : ret = send_cmd(sctx);
2458 :
2459 : tlv_put_failure:
2460 : out:
2461 766 : fs_path_free(p);
2462 766 : btrfs_free_path(path);
2463 766 : return ret;
2464 : }
2465 :
2466 : /*
2467 : * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2468 : * a valid path yet because we did not process the refs yet. So, the inode
2469 : * is created as orphan.
2470 : */
2471 231 : static int send_create_inode(struct send_ctx *sctx, u64 ino)
2472 : {
2473 : int ret = 0;
2474 : struct fs_path *p;
2475 : int cmd;
2476 : u64 gen;
2477 : u64 mode;
2478 : u64 rdev;
2479 :
2480 231 : verbose_printk("btrfs: send_create_inode %llu\n", ino);
2481 :
2482 231 : p = fs_path_alloc();
2483 231 : if (!p)
2484 : return -ENOMEM;
2485 :
2486 231 : if (ino != sctx->cur_ino) {
2487 19 : ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2488 : NULL, NULL, &rdev);
2489 19 : if (ret < 0)
2490 : goto out;
2491 : } else {
2492 212 : gen = sctx->cur_inode_gen;
2493 212 : mode = sctx->cur_inode_mode;
2494 212 : rdev = sctx->cur_inode_rdev;
2495 : }
2496 :
2497 231 : if (S_ISREG(mode)) {
2498 : cmd = BTRFS_SEND_C_MKFILE;
2499 178 : } else if (S_ISDIR(mode)) {
2500 : cmd = BTRFS_SEND_C_MKDIR;
2501 22 : } else if (S_ISLNK(mode)) {
2502 : cmd = BTRFS_SEND_C_SYMLINK;
2503 10 : } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2504 : cmd = BTRFS_SEND_C_MKNOD;
2505 0 : } else if (S_ISFIFO(mode)) {
2506 : cmd = BTRFS_SEND_C_MKFIFO;
2507 0 : } else if (S_ISSOCK(mode)) {
2508 : cmd = BTRFS_SEND_C_MKSOCK;
2509 : } else {
2510 0 : printk(KERN_WARNING "btrfs: unexpected inode type %o",
2511 : (int)(mode & S_IFMT));
2512 : ret = -ENOTSUPP;
2513 0 : goto out;
2514 : }
2515 :
2516 231 : ret = begin_cmd(sctx, cmd);
2517 231 : if (ret < 0)
2518 : goto out;
2519 :
2520 231 : ret = gen_unique_name(sctx, ino, gen, p);
2521 231 : if (ret < 0)
2522 : goto out;
2523 :
2524 231 : TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2525 231 : TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2526 :
2527 231 : if (S_ISLNK(mode)) {
2528 : fs_path_reset(p);
2529 12 : ret = read_symlink(sctx->send_root, ino, p);
2530 12 : if (ret < 0)
2531 : goto out;
2532 12 : TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2533 219 : } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2534 209 : S_ISFIFO(mode) || S_ISSOCK(mode)) {
2535 30 : TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2536 20 : TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2537 : }
2538 :
2539 231 : ret = send_cmd(sctx);
2540 : if (ret < 0)
2541 : goto out;
2542 :
2543 :
2544 : tlv_put_failure:
2545 : out:
2546 231 : fs_path_free(p);
2547 231 : return ret;
2548 : }
2549 :
2550 : /*
2551 : * We need some special handling for inodes that get processed before the parent
2552 : * directory got created. See process_recorded_refs for details.
2553 : * This function does the check if we already created the dir out of order.
2554 : */
2555 177 : static int did_create_dir(struct send_ctx *sctx, u64 dir)
2556 : {
2557 : int ret = 0;
2558 : struct btrfs_path *path = NULL;
2559 : struct btrfs_key key;
2560 : struct btrfs_key found_key;
2561 : struct btrfs_key di_key;
2562 378 : struct extent_buffer *eb;
2563 : struct btrfs_dir_item *di;
2564 : int slot;
2565 :
2566 : path = alloc_path_for_send();
2567 177 : if (!path) {
2568 : ret = -ENOMEM;
2569 : goto out;
2570 : }
2571 :
2572 177 : key.objectid = dir;
2573 177 : key.type = BTRFS_DIR_INDEX_KEY;
2574 177 : key.offset = 0;
2575 177 : ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2576 177 : if (ret < 0)
2577 : goto out;
2578 :
2579 : while (1) {
2580 378 : eb = path->nodes[0];
2581 378 : slot = path->slots[0];
2582 756 : if (slot >= btrfs_header_nritems(eb)) {
2583 9 : ret = btrfs_next_leaf(sctx->send_root, path);
2584 9 : if (ret < 0) {
2585 : goto out;
2586 9 : } else if (ret > 0) {
2587 : ret = 0;
2588 : break;
2589 : }
2590 2 : continue;
2591 : }
2592 :
2593 369 : btrfs_item_key_to_cpu(eb, &found_key, slot);
2594 589 : if (found_key.objectid != key.objectid ||
2595 220 : found_key.type != key.type) {
2596 : ret = 0;
2597 : goto out;
2598 : }
2599 :
2600 220 : di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2601 220 : btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2602 :
2603 439 : if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2604 219 : di_key.objectid < sctx->send_progress) {
2605 : ret = 1;
2606 : goto out;
2607 : }
2608 :
2609 199 : path->slots[0]++;
2610 : }
2611 :
2612 : out:
2613 177 : btrfs_free_path(path);
2614 177 : return ret;
2615 : }
2616 :
2617 : /*
2618 : * Only creates the inode if it is:
2619 : * 1. Not a directory
2620 : * 2. Or a directory which was not created already due to out of order
2621 : * directories. See did_create_dir and process_recorded_refs for details.
2622 : */
2623 231 : static int send_create_inode_if_needed(struct send_ctx *sctx)
2624 : {
2625 : int ret;
2626 :
2627 231 : if (S_ISDIR(sctx->cur_inode_mode)) {
2628 156 : ret = did_create_dir(sctx, sctx->cur_ino);
2629 156 : if (ret < 0)
2630 : goto out;
2631 156 : if (ret) {
2632 : ret = 0;
2633 : goto out;
2634 : }
2635 : }
2636 :
2637 212 : ret = send_create_inode(sctx, sctx->cur_ino);
2638 : if (ret < 0)
2639 : goto out;
2640 :
2641 : out:
2642 231 : return ret;
2643 : }
2644 :
2645 : struct recorded_ref {
2646 : struct list_head list;
2647 : char *dir_path;
2648 : char *name;
2649 : struct fs_path *full_path;
2650 : u64 dir;
2651 : u64 dir_gen;
2652 : int dir_path_len;
2653 : int name_len;
2654 : };
2655 :
2656 : /*
2657 : * We need to process new refs before deleted refs, but compare_tree gives us
2658 : * everything mixed. So we first record all refs and later process them.
2659 : * This function is a helper to record one ref.
2660 : */
2661 378 : static int __record_ref(struct list_head *head, u64 dir,
2662 : u64 dir_gen, struct fs_path *path)
2663 : {
2664 : struct recorded_ref *ref;
2665 :
2666 : ref = kmalloc(sizeof(*ref), GFP_NOFS);
2667 378 : if (!ref)
2668 : return -ENOMEM;
2669 :
2670 378 : ref->dir = dir;
2671 378 : ref->dir_gen = dir_gen;
2672 378 : ref->full_path = path;
2673 :
2674 756 : ref->name = (char *)kbasename(ref->full_path->start);
2675 378 : ref->name_len = ref->full_path->end - ref->name;
2676 378 : ref->dir_path = ref->full_path->start;
2677 378 : if (ref->name == ref->full_path->start)
2678 37 : ref->dir_path_len = 0;
2679 : else
2680 341 : ref->dir_path_len = ref->full_path->end -
2681 : ref->full_path->start - 1 - ref->name_len;
2682 :
2683 378 : list_add_tail(&ref->list, head);
2684 378 : return 0;
2685 : }
2686 :
2687 456 : static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2688 : {
2689 : struct recorded_ref *new;
2690 :
2691 : new = kmalloc(sizeof(*ref), GFP_NOFS);
2692 456 : if (!new)
2693 : return -ENOMEM;
2694 :
2695 456 : new->dir = ref->dir;
2696 456 : new->dir_gen = ref->dir_gen;
2697 456 : new->full_path = NULL;
2698 456 : INIT_LIST_HEAD(&new->list);
2699 : list_add_tail(&new->list, list);
2700 : return 0;
2701 : }
2702 :
2703 1041 : static void __free_recorded_refs(struct list_head *head)
2704 : {
2705 : struct recorded_ref *cur;
2706 :
2707 2916 : while (!list_empty(head)) {
2708 : cur = list_entry(head->next, struct recorded_ref, list);
2709 834 : fs_path_free(cur->full_path);
2710 834 : list_del(&cur->list);
2711 834 : kfree(cur);
2712 : }
2713 1041 : }
2714 :
2715 : static void free_recorded_refs(struct send_ctx *sctx)
2716 : {
2717 347 : __free_recorded_refs(&sctx->new_refs);
2718 347 : __free_recorded_refs(&sctx->deleted_refs);
2719 : }
2720 :
2721 : /*
2722 : * Renames/moves a file/dir to its orphan name. Used when the first
2723 : * ref of an unprocessed inode gets overwritten and for all non empty
2724 : * directories.
2725 : */
2726 5 : static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2727 : struct fs_path *path)
2728 : {
2729 : int ret;
2730 : struct fs_path *orphan;
2731 :
2732 5 : orphan = fs_path_alloc();
2733 5 : if (!orphan)
2734 : return -ENOMEM;
2735 :
2736 5 : ret = gen_unique_name(sctx, ino, gen, orphan);
2737 5 : if (ret < 0)
2738 : goto out;
2739 :
2740 5 : ret = send_rename(sctx, path, orphan);
2741 :
2742 : out:
2743 5 : fs_path_free(orphan);
2744 5 : return ret;
2745 : }
2746 :
2747 : static struct orphan_dir_info *
2748 6 : add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2749 : {
2750 6 : struct rb_node **p = &sctx->orphan_dirs.rb_node;
2751 : struct rb_node *parent = NULL;
2752 : struct orphan_dir_info *entry, *odi;
2753 :
2754 : odi = kmalloc(sizeof(*odi), GFP_NOFS);
2755 6 : if (!odi)
2756 : return ERR_PTR(-ENOMEM);
2757 6 : odi->ino = dir_ino;
2758 6 : odi->gen = 0;
2759 :
2760 12 : while (*p) {
2761 : parent = *p;
2762 : entry = rb_entry(parent, struct orphan_dir_info, node);
2763 4 : if (dir_ino < entry->ino) {
2764 0 : p = &(*p)->rb_left;
2765 4 : } else if (dir_ino > entry->ino) {
2766 0 : p = &(*p)->rb_right;
2767 : } else {
2768 4 : kfree(odi);
2769 4 : return entry;
2770 : }
2771 : }
2772 :
2773 2 : rb_link_node(&odi->node, parent, p);
2774 2 : rb_insert_color(&odi->node, &sctx->orphan_dirs);
2775 2 : return odi;
2776 : }
2777 :
2778 : static struct orphan_dir_info *
2779 : get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2780 : {
2781 : struct rb_node *n = sctx->orphan_dirs.rb_node;
2782 : struct orphan_dir_info *entry;
2783 :
2784 28564 : while (n) {
2785 : entry = rb_entry(n, struct orphan_dir_info, node);
2786 116 : if (dir_ino < entry->ino)
2787 63 : n = n->rb_left;
2788 53 : else if (dir_ino > entry->ino)
2789 35 : n = n->rb_right;
2790 : else
2791 : return entry;
2792 : }
2793 : return NULL;
2794 : }
2795 :
2796 28463 : static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2797 : {
2798 : struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2799 :
2800 : return odi != NULL;
2801 : }
2802 :
2803 2 : static void free_orphan_dir_info(struct send_ctx *sctx,
2804 : struct orphan_dir_info *odi)
2805 : {
2806 2 : if (!odi)
2807 2 : return;
2808 2 : rb_erase(&odi->node, &sctx->orphan_dirs);
2809 2 : kfree(odi);
2810 : }
2811 :
2812 : /*
2813 : * Returns 1 if a directory can be removed at this point in time.
2814 : * We check this by iterating all dir items and checking if the inode behind
2815 : * the dir item was already processed.
2816 : */
2817 50 : static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2818 : u64 send_progress)
2819 : {
2820 : int ret = 0;
2821 19 : struct btrfs_root *root = sctx->parent_root;
2822 : struct btrfs_path *path;
2823 : struct btrfs_key key;
2824 : struct btrfs_key found_key;
2825 : struct btrfs_key loc;
2826 : struct btrfs_dir_item *di;
2827 :
2828 : /*
2829 : * Don't try to rmdir the top/root subvolume dir.
2830 : */
2831 19 : if (dir == BTRFS_FIRST_FREE_OBJECTID)
2832 : return 0;
2833 :
2834 : path = alloc_path_for_send();
2835 19 : if (!path)
2836 : return -ENOMEM;
2837 :
2838 19 : key.objectid = dir;
2839 19 : key.type = BTRFS_DIR_INDEX_KEY;
2840 19 : key.offset = 0;
2841 19 : ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2842 19 : if (ret < 0)
2843 : goto out;
2844 :
2845 : while (1) {
2846 : struct waiting_dir_move *dm;
2847 :
2848 74 : if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2849 1 : ret = btrfs_next_leaf(root, path);
2850 1 : if (ret < 0)
2851 : goto out;
2852 1 : else if (ret > 0)
2853 : break;
2854 0 : continue;
2855 : }
2856 36 : btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2857 : path->slots[0]);
2858 67 : if (found_key.objectid != key.objectid ||
2859 31 : found_key.type != key.type)
2860 : break;
2861 :
2862 62 : di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2863 : struct btrfs_dir_item);
2864 31 : btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2865 :
2866 31 : dm = get_waiting_dir_move(sctx, loc.objectid);
2867 31 : if (dm) {
2868 : struct orphan_dir_info *odi;
2869 :
2870 6 : odi = add_orphan_dir_info(sctx, dir);
2871 6 : if (IS_ERR(odi)) {
2872 0 : ret = PTR_ERR(odi);
2873 0 : goto out;
2874 : }
2875 6 : odi->gen = dir_gen;
2876 6 : dm->rmdir_ino = dir;
2877 : ret = 0;
2878 6 : goto out;
2879 : }
2880 :
2881 25 : if (loc.objectid > send_progress) {
2882 : ret = 0;
2883 : goto out;
2884 : }
2885 :
2886 18 : path->slots[0]++;
2887 : }
2888 :
2889 : ret = 1;
2890 :
2891 : out:
2892 19 : btrfs_free_path(path);
2893 19 : return ret;
2894 : }
2895 :
2896 28908 : static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
2897 : {
2898 : struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
2899 :
2900 : return entry != NULL;
2901 : }
2902 :
2903 39 : static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino)
2904 : {
2905 39 : struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
2906 : struct rb_node *parent = NULL;
2907 : struct waiting_dir_move *entry, *dm;
2908 :
2909 : dm = kmalloc(sizeof(*dm), GFP_NOFS);
2910 39 : if (!dm)
2911 : return -ENOMEM;
2912 39 : dm->ino = ino;
2913 39 : dm->rmdir_ino = 0;
2914 :
2915 157 : while (*p) {
2916 : parent = *p;
2917 : entry = rb_entry(parent, struct waiting_dir_move, node);
2918 79 : if (ino < entry->ino) {
2919 2 : p = &(*p)->rb_left;
2920 77 : } else if (ino > entry->ino) {
2921 77 : p = &(*p)->rb_right;
2922 : } else {
2923 0 : kfree(dm);
2924 0 : return -EEXIST;
2925 : }
2926 : }
2927 :
2928 39 : rb_link_node(&dm->node, parent, p);
2929 39 : rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
2930 39 : return 0;
2931 : }
2932 :
2933 : static struct waiting_dir_move *
2934 : get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
2935 : {
2936 : struct rb_node *n = sctx->waiting_dir_moves.rb_node;
2937 : struct waiting_dir_move *entry;
2938 :
2939 32286 : while (n) {
2940 : entry = rb_entry(n, struct waiting_dir_move, node);
2941 3570 : if (ino < entry->ino)
2942 1482 : n = n->rb_left;
2943 2088 : else if (ino > entry->ino)
2944 1826 : n = n->rb_right;
2945 : else
2946 : return entry;
2947 : }
2948 : return NULL;
2949 : }
2950 :
2951 39 : static void free_waiting_dir_move(struct send_ctx *sctx,
2952 : struct waiting_dir_move *dm)
2953 : {
2954 39 : if (!dm)
2955 39 : return;
2956 39 : rb_erase(&dm->node, &sctx->waiting_dir_moves);
2957 39 : kfree(dm);
2958 : }
2959 :
2960 39 : static int add_pending_dir_move(struct send_ctx *sctx,
2961 : u64 ino,
2962 : u64 ino_gen,
2963 : u64 parent_ino,
2964 : struct list_head *new_refs,
2965 : struct list_head *deleted_refs)
2966 : {
2967 39 : struct rb_node **p = &sctx->pending_dir_moves.rb_node;
2968 : struct rb_node *parent = NULL;
2969 : struct pending_dir_move *entry = NULL, *pm;
2970 : struct recorded_ref *cur;
2971 : int exists = 0;
2972 : int ret;
2973 :
2974 : pm = kmalloc(sizeof(*pm), GFP_NOFS);
2975 39 : if (!pm)
2976 : return -ENOMEM;
2977 39 : pm->parent_ino = parent_ino;
2978 39 : pm->ino = ino;
2979 39 : pm->gen = ino_gen;
2980 39 : INIT_LIST_HEAD(&pm->list);
2981 39 : INIT_LIST_HEAD(&pm->update_refs);
2982 39 : RB_CLEAR_NODE(&pm->node);
2983 :
2984 134 : while (*p) {
2985 : parent = *p;
2986 : entry = rb_entry(parent, struct pending_dir_move, node);
2987 61 : if (parent_ino < entry->parent_ino) {
2988 15 : p = &(*p)->rb_left;
2989 46 : } else if (parent_ino > entry->parent_ino) {
2990 41 : p = &(*p)->rb_right;
2991 : } else {
2992 : exists = 1;
2993 : break;
2994 : }
2995 : }
2996 :
2997 76 : list_for_each_entry(cur, deleted_refs, list) {
2998 37 : ret = dup_ref(cur, &pm->update_refs);
2999 37 : if (ret < 0)
3000 : goto out;
3001 : }
3002 80 : list_for_each_entry(cur, new_refs, list) {
3003 41 : ret = dup_ref(cur, &pm->update_refs);
3004 41 : if (ret < 0)
3005 : goto out;
3006 : }
3007 :
3008 39 : ret = add_waiting_dir_move(sctx, pm->ino);
3009 39 : if (ret)
3010 : goto out;
3011 :
3012 39 : if (exists) {
3013 5 : list_add_tail(&pm->list, &entry->list);
3014 : } else {
3015 : rb_link_node(&pm->node, parent, p);
3016 34 : rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3017 : }
3018 : ret = 0;
3019 : out:
3020 39 : if (ret) {
3021 0 : __free_recorded_refs(&pm->update_refs);
3022 0 : kfree(pm);
3023 : }
3024 39 : return ret;
3025 : }
3026 :
3027 : static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3028 : u64 parent_ino)
3029 : {
3030 : struct rb_node *n = sctx->pending_dir_moves.rb_node;
3031 : struct pending_dir_move *entry;
3032 :
3033 495 : while (n) {
3034 : entry = rb_entry(n, struct pending_dir_move, node);
3035 144 : if (parent_ino < entry->parent_ino)
3036 64 : n = n->rb_left;
3037 80 : else if (parent_ino > entry->parent_ino)
3038 46 : n = n->rb_right;
3039 : else
3040 : return entry;
3041 : }
3042 : return NULL;
3043 : }
3044 :
3045 39 : static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3046 : u64 ino, u64 gen, u64 *ancestor_ino)
3047 : {
3048 : int ret = 0;
3049 39 : u64 parent_inode = 0;
3050 39 : u64 parent_gen = 0;
3051 : u64 start_ino = ino;
3052 :
3053 39 : *ancestor_ino = 0;
3054 253 : while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3055 : fs_path_reset(name);
3056 :
3057 177 : if (is_waiting_for_rm(sctx, ino))
3058 : break;
3059 177 : if (is_waiting_for_move(sctx, ino)) {
3060 2 : if (*ancestor_ino == 0)
3061 2 : *ancestor_ino = ino;
3062 2 : ret = get_first_ref(sctx->parent_root, ino,
3063 : &parent_inode, &parent_gen, name);
3064 : } else {
3065 175 : ret = __get_cur_name_and_parent(sctx, ino, gen,
3066 : &parent_inode,
3067 : &parent_gen, name);
3068 175 : if (ret > 0) {
3069 : ret = 0;
3070 : break;
3071 : }
3072 : }
3073 177 : if (ret < 0)
3074 : break;
3075 177 : if (parent_inode == start_ino) {
3076 : ret = 1;
3077 2 : if (*ancestor_ino == 0)
3078 0 : *ancestor_ino = ino;
3079 : break;
3080 : }
3081 : ino = parent_inode;
3082 175 : gen = parent_gen;
3083 : }
3084 39 : return ret;
3085 : }
3086 :
3087 81 : static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3088 : {
3089 : struct fs_path *from_path = NULL;
3090 : struct fs_path *to_path = NULL;
3091 : struct fs_path *name = NULL;
3092 39 : u64 orig_progress = sctx->send_progress;
3093 : struct recorded_ref *cur;
3094 : u64 parent_ino, parent_gen;
3095 : struct waiting_dir_move *dm = NULL;
3096 : u64 rmdir_ino = 0;
3097 : int ret;
3098 39 : u64 ancestor = 0;
3099 :
3100 39 : name = fs_path_alloc();
3101 39 : from_path = fs_path_alloc();
3102 39 : if (!name || !from_path) {
3103 : ret = -ENOMEM;
3104 : goto out;
3105 : }
3106 :
3107 39 : dm = get_waiting_dir_move(sctx, pm->ino);
3108 : ASSERT(dm);
3109 39 : rmdir_ino = dm->rmdir_ino;
3110 39 : free_waiting_dir_move(sctx, dm);
3111 :
3112 39 : ret = get_first_ref(sctx->parent_root, pm->ino,
3113 : &parent_ino, &parent_gen, name);
3114 39 : if (ret < 0)
3115 : goto out;
3116 :
3117 39 : ret = get_cur_path(sctx, parent_ino, parent_gen,
3118 : from_path);
3119 39 : if (ret < 0)
3120 : goto out;
3121 39 : ret = fs_path_add_path(from_path, name);
3122 39 : if (ret < 0)
3123 : goto out;
3124 :
3125 39 : sctx->send_progress = sctx->cur_ino + 1;
3126 39 : ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3127 39 : if (ret) {
3128 2 : LIST_HEAD(deleted_refs);
3129 : ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3130 2 : ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3131 : &pm->update_refs, &deleted_refs);
3132 2 : if (ret < 0)
3133 : goto out;
3134 2 : if (rmdir_ino) {
3135 0 : dm = get_waiting_dir_move(sctx, pm->ino);
3136 : ASSERT(dm);
3137 0 : dm->rmdir_ino = rmdir_ino;
3138 : }
3139 : goto out;
3140 : }
3141 : fs_path_reset(name);
3142 : to_path = name;
3143 : name = NULL;
3144 37 : ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3145 37 : if (ret < 0)
3146 : goto out;
3147 :
3148 37 : ret = send_rename(sctx, from_path, to_path);
3149 37 : if (ret < 0)
3150 : goto out;
3151 :
3152 37 : if (rmdir_ino) {
3153 : struct orphan_dir_info *odi;
3154 :
3155 : odi = get_orphan_dir_info(sctx, rmdir_ino);
3156 3 : if (!odi) {
3157 : /* already deleted */
3158 : goto finish;
3159 : }
3160 3 : ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino + 1);
3161 3 : if (ret < 0)
3162 : goto out;
3163 3 : if (!ret)
3164 : goto finish;
3165 :
3166 2 : name = fs_path_alloc();
3167 2 : if (!name) {
3168 : ret = -ENOMEM;
3169 : goto out;
3170 : }
3171 2 : ret = get_cur_path(sctx, rmdir_ino, odi->gen, name);
3172 2 : if (ret < 0)
3173 : goto out;
3174 2 : ret = send_rmdir(sctx, name);
3175 2 : if (ret < 0)
3176 : goto out;
3177 2 : free_orphan_dir_info(sctx, odi);
3178 : }
3179 :
3180 : finish:
3181 37 : ret = send_utimes(sctx, pm->ino, pm->gen);
3182 37 : if (ret < 0)
3183 : goto out;
3184 :
3185 : /*
3186 : * After rename/move, need to update the utimes of both new parent(s)
3187 : * and old parent(s).
3188 : */
3189 111 : list_for_each_entry(cur, &pm->update_refs, list) {
3190 74 : if (cur->dir == rmdir_ino)
3191 3 : continue;
3192 71 : ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3193 71 : if (ret < 0)
3194 : goto out;
3195 : }
3196 :
3197 : out:
3198 39 : fs_path_free(name);
3199 39 : fs_path_free(from_path);
3200 39 : fs_path_free(to_path);
3201 39 : sctx->send_progress = orig_progress;
3202 :
3203 39 : return ret;
3204 : }
3205 :
3206 39 : static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3207 : {
3208 78 : if (!list_empty(&m->list))
3209 39 : list_del(&m->list);
3210 39 : if (!RB_EMPTY_NODE(&m->node))
3211 34 : rb_erase(&m->node, &sctx->pending_dir_moves);
3212 39 : __free_recorded_refs(&m->update_refs);
3213 39 : kfree(m);
3214 39 : }
3215 :
3216 34 : static void tail_append_pending_moves(struct pending_dir_move *moves,
3217 : struct list_head *stack)
3218 : {
3219 68 : if (list_empty(&moves->list)) {
3220 : list_add_tail(&moves->list, stack);
3221 : } else {
3222 5 : LIST_HEAD(list);
3223 : list_splice_init(&moves->list, &list);
3224 : list_add_tail(&moves->list, stack);
3225 : list_splice_tail(&list, stack);
3226 : }
3227 34 : }
3228 :
3229 731 : static int apply_children_dir_moves(struct send_ctx *sctx)
3230 : {
3231 : struct pending_dir_move *pm;
3232 : struct list_head stack;
3233 346 : u64 parent_ino = sctx->cur_ino;
3234 : int ret = 0;
3235 :
3236 : pm = get_pending_dir_moves(sctx, parent_ino);
3237 346 : if (!pm)
3238 : return 0;
3239 :
3240 : INIT_LIST_HEAD(&stack);
3241 20 : tail_append_pending_moves(pm, &stack);
3242 :
3243 79 : while (!list_empty(&stack)) {
3244 39 : pm = list_first_entry(&stack, struct pending_dir_move, list);
3245 39 : parent_ino = pm->ino;
3246 39 : ret = apply_dir_move(sctx, pm);
3247 39 : free_pending_move(sctx, pm);
3248 39 : if (ret)
3249 : goto out;
3250 : pm = get_pending_dir_moves(sctx, parent_ino);
3251 39 : if (pm)
3252 14 : tail_append_pending_moves(pm, &stack);
3253 : }
3254 : return 0;
3255 :
3256 : out:
3257 0 : while (!list_empty(&stack)) {
3258 0 : pm = list_first_entry(&stack, struct pending_dir_move, list);
3259 0 : free_pending_move(sctx, pm);
3260 : }
3261 : return ret;
3262 : }
3263 :
3264 54 : static int wait_for_parent_move(struct send_ctx *sctx,
3265 : struct recorded_ref *parent_ref)
3266 : {
3267 : int ret = 0;
3268 54 : u64 ino = parent_ref->dir;
3269 : u64 parent_ino_before, parent_ino_after;
3270 : struct fs_path *path_before = NULL;
3271 : struct fs_path *path_after = NULL;
3272 : int len1, len2;
3273 :
3274 54 : path_after = fs_path_alloc();
3275 54 : path_before = fs_path_alloc();
3276 54 : if (!path_after || !path_before) {
3277 : ret = -ENOMEM;
3278 : goto out;
3279 : }
3280 :
3281 : /*
3282 : * Our current directory inode may not yet be renamed/moved because some
3283 : * ancestor (immediate or not) has to be renamed/moved first. So find if
3284 : * such ancestor exists and make sure our own rename/move happens after
3285 : * that ancestor is processed.
3286 : */
3287 94 : while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3288 77 : if (is_waiting_for_move(sctx, ino)) {
3289 : ret = 1;
3290 : break;
3291 : }
3292 :
3293 : fs_path_reset(path_before);
3294 : fs_path_reset(path_after);
3295 :
3296 71 : ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3297 : NULL, path_after);
3298 71 : if (ret < 0)
3299 : goto out;
3300 71 : ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3301 : NULL, path_before);
3302 71 : if (ret < 0 && ret != -ENOENT) {
3303 : goto out;
3304 71 : } else if (ret == -ENOENT) {
3305 : ret = 1;
3306 : break;
3307 : }
3308 :
3309 : len1 = fs_path_len(path_before);
3310 : len2 = fs_path_len(path_after);
3311 94 : if (ino > sctx->cur_ino &&
3312 48 : (parent_ino_before != parent_ino_after || len1 != len2 ||
3313 8 : memcmp(path_before->start, path_after->start, len1))) {
3314 : ret = 1;
3315 : break;
3316 : }
3317 40 : ino = parent_ino_after;
3318 : }
3319 :
3320 : out:
3321 54 : fs_path_free(path_before);
3322 54 : fs_path_free(path_after);
3323 :
3324 54 : if (ret == 1) {
3325 37 : ret = add_pending_dir_move(sctx,
3326 : sctx->cur_ino,
3327 : sctx->cur_inode_gen,
3328 : ino,
3329 : &sctx->new_refs,
3330 : &sctx->deleted_refs);
3331 37 : if (!ret)
3332 : ret = 1;
3333 : }
3334 :
3335 54 : return ret;
3336 : }
3337 :
3338 : /*
3339 : * This does all the move/link/unlink/rmdir magic.
3340 : */
3341 308 : static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3342 : {
3343 : int ret = 0;
3344 54 : struct recorded_ref *cur;
3345 : struct recorded_ref *cur2;
3346 : struct list_head check_dirs;
3347 : struct fs_path *valid_path = NULL;
3348 308 : u64 ow_inode = 0;
3349 : u64 ow_gen;
3350 : int did_overwrite = 0;
3351 : int is_orphan = 0;
3352 : u64 last_dir_ino_rm = 0;
3353 :
3354 308 : verbose_printk("btrfs: process_recorded_refs %llu\n", sctx->cur_ino);
3355 :
3356 : /*
3357 : * This should never happen as the root dir always has the same ref
3358 : * which is always '..'
3359 : */
3360 308 : BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3361 : INIT_LIST_HEAD(&check_dirs);
3362 :
3363 308 : valid_path = fs_path_alloc();
3364 308 : if (!valid_path) {
3365 : ret = -ENOMEM;
3366 : goto out;
3367 : }
3368 :
3369 : /*
3370 : * First, check if the first ref of the current inode was overwritten
3371 : * before. If yes, we know that the current inode was already orphanized
3372 : * and thus use the orphan name. If not, we can use get_cur_path to
3373 : * get the path of the first ref as it would like while receiving at
3374 : * this point in time.
3375 : * New inodes are always orphan at the beginning, so force to use the
3376 : * orphan name in this case.
3377 : * The first ref is stored in valid_path and will be updated if it
3378 : * gets moved around.
3379 : */
3380 308 : if (!sctx->cur_inode_new) {
3381 77 : ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3382 : sctx->cur_inode_gen);
3383 77 : if (ret < 0)
3384 : goto out;
3385 77 : if (ret)
3386 : did_overwrite = 1;
3387 : }
3388 308 : if (sctx->cur_inode_new || did_overwrite) {
3389 231 : ret = gen_unique_name(sctx, sctx->cur_ino,
3390 : sctx->cur_inode_gen, valid_path);
3391 231 : if (ret < 0)
3392 : goto out;
3393 : is_orphan = 1;
3394 : } else {
3395 77 : ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3396 : valid_path);
3397 77 : if (ret < 0)
3398 : goto out;
3399 : }
3400 :
3401 609 : list_for_each_entry(cur, &sctx->new_refs, list) {
3402 : /*
3403 : * We may have refs where the parent directory does not exist
3404 : * yet. This happens if the parent directories inum is higher
3405 : * the the current inum. To handle this case, we create the
3406 : * parent directory out of order. But we need to check if this
3407 : * did already happen before due to other refs in the same dir.
3408 : */
3409 301 : ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3410 301 : if (ret < 0)
3411 : goto out;
3412 301 : if (ret == inode_state_will_create) {
3413 : ret = 0;
3414 : /*
3415 : * First check if any of the current inodes refs did
3416 : * already create the dir.
3417 : */
3418 21 : list_for_each_entry(cur2, &sctx->new_refs, list) {
3419 21 : if (cur == cur2)
3420 : break;
3421 0 : if (cur2->dir == cur->dir) {
3422 : ret = 1;
3423 : break;
3424 : }
3425 : }
3426 :
3427 : /*
3428 : * If that did not happen, check if a previous inode
3429 : * did already create the dir.
3430 : */
3431 21 : if (!ret)
3432 21 : ret = did_create_dir(sctx, cur->dir);
3433 21 : if (ret < 0)
3434 : goto out;
3435 21 : if (!ret) {
3436 19 : ret = send_create_inode(sctx, cur->dir);
3437 19 : if (ret < 0)
3438 : goto out;
3439 : }
3440 : }
3441 :
3442 : /*
3443 : * Check if this new ref would overwrite the first ref of
3444 : * another unprocessed inode. If yes, orphanize the
3445 : * overwritten inode. If we find an overwritten ref that is
3446 : * not the first ref, simply unlink it.
3447 : */
3448 602 : ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3449 301 : cur->name, cur->name_len,
3450 : &ow_inode, &ow_gen);
3451 301 : if (ret < 0)
3452 : goto out;
3453 301 : if (ret) {
3454 0 : ret = is_first_ref(sctx->parent_root,
3455 0 : ow_inode, cur->dir, cur->name,
3456 : cur->name_len);
3457 0 : if (ret < 0)
3458 : goto out;
3459 0 : if (ret) {
3460 0 : ret = orphanize_inode(sctx, ow_inode, ow_gen,
3461 : cur->full_path);
3462 0 : if (ret < 0)
3463 : goto out;
3464 : } else {
3465 0 : ret = send_unlink(sctx, cur->full_path);
3466 0 : if (ret < 0)
3467 : goto out;
3468 : }
3469 : }
3470 :
3471 : /*
3472 : * link/move the ref to the new place. If we have an orphan
3473 : * inode, move it and update valid_path. If not, link or move
3474 : * it depending on the inode mode.
3475 : */
3476 301 : if (is_orphan) {
3477 231 : ret = send_rename(sctx, valid_path, cur->full_path);
3478 231 : if (ret < 0)
3479 : goto out;
3480 : is_orphan = 0;
3481 231 : ret = fs_path_copy(valid_path, cur->full_path);
3482 231 : if (ret < 0)
3483 : goto out;
3484 : } else {
3485 70 : if (S_ISDIR(sctx->cur_inode_mode)) {
3486 : /*
3487 : * Dirs can't be linked, so move it. For moved
3488 : * dirs, we always have one new and one deleted
3489 : * ref. The deleted ref is ignored later.
3490 : */
3491 54 : ret = wait_for_parent_move(sctx, cur);
3492 54 : if (ret < 0)
3493 : goto out;
3494 54 : if (ret) {
3495 37 : *pending_move = 1;
3496 : } else {
3497 17 : ret = send_rename(sctx, valid_path,
3498 : cur->full_path);
3499 17 : if (!ret)
3500 17 : ret = fs_path_copy(valid_path,
3501 : cur->full_path);
3502 : }
3503 54 : if (ret < 0)
3504 : goto out;
3505 : } else {
3506 16 : ret = send_link(sctx, cur->full_path,
3507 : valid_path);
3508 16 : if (ret < 0)
3509 : goto out;
3510 : }
3511 : }
3512 301 : ret = dup_ref(cur, &check_dirs);
3513 301 : if (ret < 0)
3514 : goto out;
3515 : }
3516 :
3517 308 : if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
3518 : /*
3519 : * Check if we can already rmdir the directory. If not,
3520 : * orphanize it. For every dir item inside that gets deleted
3521 : * later, we do this check again and rmdir it then if possible.
3522 : * See the use of check_dirs for more details.
3523 : */
3524 6 : ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3525 : sctx->cur_ino);
3526 6 : if (ret < 0)
3527 : goto out;
3528 6 : if (ret) {
3529 1 : ret = send_rmdir(sctx, valid_path);
3530 1 : if (ret < 0)
3531 : goto out;
3532 5 : } else if (!is_orphan) {
3533 5 : ret = orphanize_inode(sctx, sctx->cur_ino,
3534 : sctx->cur_inode_gen, valid_path);
3535 5 : if (ret < 0)
3536 : goto out;
3537 : is_orphan = 1;
3538 : }
3539 :
3540 12 : list_for_each_entry(cur, &sctx->deleted_refs, list) {
3541 6 : ret = dup_ref(cur, &check_dirs);
3542 6 : if (ret < 0)
3543 : goto out;
3544 : }
3545 512 : } else if (S_ISDIR(sctx->cur_inode_mode) &&
3546 210 : !list_empty(&sctx->deleted_refs)) {
3547 : /*
3548 : * We have a moved dir. Add the old parent to check_dirs
3549 : */
3550 : cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
3551 : list);
3552 54 : ret = dup_ref(cur, &check_dirs);
3553 54 : if (ret < 0)
3554 : goto out;
3555 248 : } else if (!S_ISDIR(sctx->cur_inode_mode)) {
3556 : /*
3557 : * We have a non dir inode. Go through all deleted refs and
3558 : * unlink them if they were not already overwritten by other
3559 : * inodes.
3560 : */
3561 109 : list_for_each_entry(cur, &sctx->deleted_refs, list) {
3562 34 : ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3563 : sctx->cur_ino, sctx->cur_inode_gen,
3564 17 : cur->name, cur->name_len);
3565 17 : if (ret < 0)
3566 : goto out;
3567 17 : if (!ret) {
3568 17 : ret = send_unlink(sctx, cur->full_path);
3569 17 : if (ret < 0)
3570 : goto out;
3571 : }
3572 17 : ret = dup_ref(cur, &check_dirs);
3573 17 : if (ret < 0)
3574 : goto out;
3575 : }
3576 : /*
3577 : * If the inode is still orphan, unlink the orphan. This may
3578 : * happen when a previous inode did overwrite the first ref
3579 : * of this inode and no new refs were added for the current
3580 : * inode. Unlinking does not mean that the inode is deleted in
3581 : * all cases. There may still be links to this inode in other
3582 : * places.
3583 : */
3584 92 : if (is_orphan) {
3585 0 : ret = send_unlink(sctx, valid_path);
3586 0 : if (ret < 0)
3587 : goto out;
3588 : }
3589 : }
3590 :
3591 : /*
3592 : * We did collect all parent dirs where cur_inode was once located. We
3593 : * now go through all these dirs and check if they are pending for
3594 : * deletion and if it's finally possible to perform the rmdir now.
3595 : * We also update the inode stats of the parent dirs here.
3596 : */
3597 686 : list_for_each_entry(cur, &check_dirs, list) {
3598 : /*
3599 : * In case we had refs into dirs that were not processed yet,
3600 : * we don't need to do the utime and rmdir logic for these dirs.
3601 : * The dir will be processed later.
3602 : */
3603 378 : if (cur->dir > sctx->cur_ino)
3604 55 : continue;
3605 :
3606 323 : ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3607 323 : if (ret < 0)
3608 : goto out;
3609 :
3610 646 : if (ret == inode_state_did_create ||
3611 323 : ret == inode_state_no_change) {
3612 : /* TODO delayed utimes */
3613 312 : ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3614 312 : if (ret < 0)
3615 : goto out;
3616 22 : } else if (ret == inode_state_did_delete &&
3617 11 : cur->dir != last_dir_ino_rm) {
3618 10 : ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
3619 : sctx->cur_ino);
3620 10 : if (ret < 0)
3621 : goto out;
3622 10 : if (ret) {
3623 3 : ret = get_cur_path(sctx, cur->dir,
3624 : cur->dir_gen, valid_path);
3625 3 : if (ret < 0)
3626 : goto out;
3627 3 : ret = send_rmdir(sctx, valid_path);
3628 3 : if (ret < 0)
3629 : goto out;
3630 3 : last_dir_ino_rm = cur->dir;
3631 : }
3632 : }
3633 : }
3634 :
3635 : ret = 0;
3636 :
3637 : out:
3638 308 : __free_recorded_refs(&check_dirs);
3639 : free_recorded_refs(sctx);
3640 308 : fs_path_free(valid_path);
3641 308 : return ret;
3642 : }
3643 :
3644 378 : static int record_ref(struct btrfs_root *root, int num, u64 dir, int index,
3645 : struct fs_path *name, void *ctx, struct list_head *refs)
3646 : {
3647 : int ret = 0;
3648 : struct send_ctx *sctx = ctx;
3649 : struct fs_path *p;
3650 : u64 gen;
3651 :
3652 378 : p = fs_path_alloc();
3653 378 : if (!p)
3654 : return -ENOMEM;
3655 :
3656 378 : ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
3657 : NULL, NULL);
3658 378 : if (ret < 0)
3659 : goto out;
3660 :
3661 378 : ret = get_cur_path(sctx, dir, gen, p);
3662 378 : if (ret < 0)
3663 : goto out;
3664 378 : ret = fs_path_add_path(p, name);
3665 378 : if (ret < 0)
3666 : goto out;
3667 :
3668 378 : ret = __record_ref(refs, dir, gen, p);
3669 :
3670 : out:
3671 378 : if (ret)
3672 0 : fs_path_free(p);
3673 : return ret;
3674 : }
3675 :
3676 286 : static int __record_new_ref(int num, u64 dir, int index,
3677 : struct fs_path *name,
3678 : void *ctx)
3679 : {
3680 : struct send_ctx *sctx = ctx;
3681 301 : return record_ref(sctx->send_root, num, dir, index, name,
3682 : ctx, &sctx->new_refs);
3683 : }
3684 :
3685 :
3686 62 : static int __record_deleted_ref(int num, u64 dir, int index,
3687 : struct fs_path *name,
3688 : void *ctx)
3689 : {
3690 : struct send_ctx *sctx = ctx;
3691 77 : return record_ref(sctx->parent_root, num, dir, index, name,
3692 : ctx, &sctx->deleted_refs);
3693 : }
3694 :
3695 284 : static int record_new_ref(struct send_ctx *sctx)
3696 : {
3697 : int ret;
3698 :
3699 284 : ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
3700 : sctx->cmp_key, 0, __record_new_ref, sctx);
3701 284 : if (ret < 0)
3702 : goto out;
3703 : ret = 0;
3704 :
3705 : out:
3706 284 : return ret;
3707 : }
3708 :
3709 61 : static int record_deleted_ref(struct send_ctx *sctx)
3710 : {
3711 : int ret;
3712 :
3713 61 : ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
3714 : sctx->cmp_key, 0, __record_deleted_ref, sctx);
3715 61 : if (ret < 0)
3716 : goto out;
3717 : ret = 0;
3718 :
3719 : out:
3720 61 : return ret;
3721 : }
3722 :
3723 : struct find_ref_ctx {
3724 : u64 dir;
3725 : u64 dir_gen;
3726 : struct btrfs_root *root;
3727 : struct fs_path *name;
3728 : int found_idx;
3729 : };
3730 :
3731 30 : static int __find_iref(int num, u64 dir, int index,
3732 : struct fs_path *name,
3733 : void *ctx_)
3734 : {
3735 : struct find_ref_ctx *ctx = ctx_;
3736 : u64 dir_gen;
3737 : int ret;
3738 :
3739 100 : if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
3740 10 : strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
3741 : /*
3742 : * To avoid doing extra lookups we'll only do this if everything
3743 : * else matches.
3744 : */
3745 0 : ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
3746 : NULL, NULL, NULL);
3747 0 : if (ret)
3748 : return ret;
3749 0 : if (dir_gen != ctx->dir_gen)
3750 : return 0;
3751 0 : ctx->found_idx = num;
3752 0 : return 1;
3753 : }
3754 : return 0;
3755 : }
3756 :
3757 30 : static int find_iref(struct btrfs_root *root,
3758 30 : struct btrfs_path *path,
3759 : struct btrfs_key *key,
3760 : u64 dir, u64 dir_gen, struct fs_path *name)
3761 : {
3762 : int ret;
3763 : struct find_ref_ctx ctx;
3764 :
3765 30 : ctx.dir = dir;
3766 30 : ctx.name = name;
3767 30 : ctx.dir_gen = dir_gen;
3768 30 : ctx.found_idx = -1;
3769 30 : ctx.root = root;
3770 :
3771 30 : ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
3772 30 : if (ret < 0)
3773 : return ret;
3774 :
3775 30 : if (ctx.found_idx == -1)
3776 : return -ENOENT;
3777 :
3778 0 : return ctx.found_idx;
3779 : }
3780 :
3781 15 : static int __record_changed_new_ref(int num, u64 dir, int index,
3782 : struct fs_path *name,
3783 : void *ctx)
3784 : {
3785 : u64 dir_gen;
3786 : int ret;
3787 : struct send_ctx *sctx = ctx;
3788 :
3789 15 : ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
3790 : NULL, NULL, NULL);
3791 15 : if (ret)
3792 : return ret;
3793 :
3794 15 : ret = find_iref(sctx->parent_root, sctx->right_path,
3795 : sctx->cmp_key, dir, dir_gen, name);
3796 15 : if (ret == -ENOENT)
3797 : ret = __record_new_ref(num, dir, index, name, sctx);
3798 0 : else if (ret > 0)
3799 : ret = 0;
3800 :
3801 15 : return ret;
3802 : }
3803 :
3804 15 : static int __record_changed_deleted_ref(int num, u64 dir, int index,
3805 : struct fs_path *name,
3806 : void *ctx)
3807 : {
3808 : u64 dir_gen;
3809 : int ret;
3810 : struct send_ctx *sctx = ctx;
3811 :
3812 15 : ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
3813 : NULL, NULL, NULL);
3814 15 : if (ret)
3815 : return ret;
3816 :
3817 15 : ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
3818 : dir, dir_gen, name);
3819 15 : if (ret == -ENOENT)
3820 : ret = __record_deleted_ref(num, dir, index, name, sctx);
3821 0 : else if (ret > 0)
3822 : ret = 0;
3823 :
3824 15 : return ret;
3825 : }
3826 :
3827 15 : static int record_changed_ref(struct send_ctx *sctx)
3828 : {
3829 : int ret = 0;
3830 :
3831 15 : ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
3832 : sctx->cmp_key, 0, __record_changed_new_ref, sctx);
3833 15 : if (ret < 0)
3834 : goto out;
3835 15 : ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
3836 : sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
3837 15 : if (ret < 0)
3838 : goto out;
3839 : ret = 0;
3840 :
3841 : out:
3842 15 : return ret;
3843 : }
3844 :
3845 : /*
3846 : * Record and process all refs at once. Needed when an inode changes the
3847 : * generation number, which means that it was deleted and recreated.
3848 : */
3849 0 : static int process_all_refs(struct send_ctx *sctx,
3850 : enum btrfs_compare_tree_result cmd)
3851 : {
3852 : int ret;
3853 : struct btrfs_root *root;
3854 0 : struct btrfs_path *path;
3855 : struct btrfs_key key;
3856 : struct btrfs_key found_key;
3857 0 : struct extent_buffer *eb;
3858 : int slot;
3859 : iterate_inode_ref_t cb;
3860 0 : int pending_move = 0;
3861 :
3862 : path = alloc_path_for_send();
3863 0 : if (!path)
3864 : return -ENOMEM;
3865 :
3866 0 : if (cmd == BTRFS_COMPARE_TREE_NEW) {
3867 0 : root = sctx->send_root;
3868 : cb = __record_new_ref;
3869 0 : } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
3870 0 : root = sctx->parent_root;
3871 : cb = __record_deleted_ref;
3872 : } else {
3873 0 : btrfs_err(sctx->send_root->fs_info,
3874 : "Wrong command %d in process_all_refs", cmd);
3875 : ret = -EINVAL;
3876 0 : goto out;
3877 : }
3878 :
3879 0 : key.objectid = sctx->cmp_key->objectid;
3880 0 : key.type = BTRFS_INODE_REF_KEY;
3881 0 : key.offset = 0;
3882 0 : ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3883 0 : if (ret < 0)
3884 : goto out;
3885 :
3886 : while (1) {
3887 0 : eb = path->nodes[0];
3888 0 : slot = path->slots[0];
3889 0 : if (slot >= btrfs_header_nritems(eb)) {
3890 0 : ret = btrfs_next_leaf(root, path);
3891 0 : if (ret < 0)
3892 : goto out;
3893 0 : else if (ret > 0)
3894 : break;
3895 0 : continue;
3896 : }
3897 :
3898 0 : btrfs_item_key_to_cpu(eb, &found_key, slot);
3899 :
3900 0 : if (found_key.objectid != key.objectid ||
3901 0 : (found_key.type != BTRFS_INODE_REF_KEY &&
3902 : found_key.type != BTRFS_INODE_EXTREF_KEY))
3903 : break;
3904 :
3905 0 : ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
3906 0 : if (ret < 0)
3907 : goto out;
3908 :
3909 0 : path->slots[0]++;
3910 : }
3911 0 : btrfs_release_path(path);
3912 :
3913 0 : ret = process_recorded_refs(sctx, &pending_move);
3914 : /* Only applicable to an incremental send. */
3915 : ASSERT(pending_move == 0);
3916 :
3917 : out:
3918 0 : btrfs_free_path(path);
3919 0 : return ret;
3920 : }
3921 :
3922 24 : static int send_set_xattr(struct send_ctx *sctx,
3923 : struct fs_path *path,
3924 : const char *name, int name_len,
3925 : const char *data, int data_len)
3926 : {
3927 : int ret = 0;
3928 :
3929 24 : ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
3930 24 : if (ret < 0)
3931 : goto out;
3932 :
3933 24 : TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
3934 24 : TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
3935 24 : TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
3936 :
3937 24 : ret = send_cmd(sctx);
3938 :
3939 : tlv_put_failure:
3940 : out:
3941 24 : return ret;
3942 : }
3943 :
3944 0 : static int send_remove_xattr(struct send_ctx *sctx,
3945 : struct fs_path *path,
3946 : const char *name, int name_len)
3947 : {
3948 : int ret = 0;
3949 :
3950 0 : ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
3951 0 : if (ret < 0)
3952 : goto out;
3953 :
3954 0 : TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
3955 0 : TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
3956 :
3957 0 : ret = send_cmd(sctx);
3958 :
3959 : tlv_put_failure:
3960 : out:
3961 0 : return ret;
3962 : }
3963 :
3964 24 : static int __process_new_xattr(int num, struct btrfs_key *di_key,
3965 : const char *name, int name_len,
3966 : const char *data, int data_len,
3967 : u8 type, void *ctx)
3968 : {
3969 : int ret;
3970 : struct send_ctx *sctx = ctx;
3971 : struct fs_path *p;
3972 : posix_acl_xattr_header dummy_acl;
3973 :
3974 24 : p = fs_path_alloc();
3975 24 : if (!p)
3976 : return -ENOMEM;
3977 :
3978 : /*
3979 : * This hack is needed because empty acl's are stored as zero byte
3980 : * data in xattrs. Problem with that is, that receiving these zero byte
3981 : * acl's will fail later. To fix this, we send a dummy acl list that
3982 : * only contains the version number and no entries.
3983 : */
3984 48 : if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
3985 24 : !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
3986 0 : if (data_len == 0) {
3987 0 : dummy_acl.a_version =
3988 : cpu_to_le32(POSIX_ACL_XATTR_VERSION);
3989 : data = (char *)&dummy_acl;
3990 : data_len = sizeof(dummy_acl);
3991 : }
3992 : }
3993 :
3994 24 : ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3995 24 : if (ret < 0)
3996 : goto out;
3997 :
3998 24 : ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
3999 :
4000 : out:
4001 24 : fs_path_free(p);
4002 24 : return ret;
4003 : }
4004 :
4005 0 : static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4006 : const char *name, int name_len,
4007 : const char *data, int data_len,
4008 : u8 type, void *ctx)
4009 : {
4010 : int ret;
4011 : struct send_ctx *sctx = ctx;
4012 : struct fs_path *p;
4013 :
4014 0 : p = fs_path_alloc();
4015 0 : if (!p)
4016 : return -ENOMEM;
4017 :
4018 0 : ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4019 0 : if (ret < 0)
4020 : goto out;
4021 :
4022 0 : ret = send_remove_xattr(sctx, p, name, name_len);
4023 :
4024 : out:
4025 0 : fs_path_free(p);
4026 0 : return ret;
4027 : }
4028 :
4029 23 : static int process_new_xattr(struct send_ctx *sctx)
4030 : {
4031 : int ret = 0;
4032 :
4033 23 : ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4034 : sctx->cmp_key, __process_new_xattr, sctx);
4035 :
4036 23 : return ret;
4037 : }
4038 :
4039 0 : static int process_deleted_xattr(struct send_ctx *sctx)
4040 : {
4041 : int ret;
4042 :
4043 0 : ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4044 : sctx->cmp_key, __process_deleted_xattr, sctx);
4045 :
4046 0 : return ret;
4047 : }
4048 :
4049 : struct find_xattr_ctx {
4050 : const char *name;
4051 : int name_len;
4052 : int found_idx;
4053 : char *found_data;
4054 : int found_data_len;
4055 : };
4056 :
4057 2 : static int __find_xattr(int num, struct btrfs_key *di_key,
4058 : const char *name, int name_len,
4059 : const char *data, int data_len,
4060 : u8 type, void *vctx)
4061 : {
4062 : struct find_xattr_ctx *ctx = vctx;
4063 :
4064 4 : if (name_len == ctx->name_len &&
4065 2 : strncmp(name, ctx->name, name_len) == 0) {
4066 2 : ctx->found_idx = num;
4067 2 : ctx->found_data_len = data_len;
4068 2 : ctx->found_data = kmemdup(data, data_len, GFP_NOFS);
4069 2 : if (!ctx->found_data)
4070 : return -ENOMEM;
4071 2 : return 1;
4072 : }
4073 : return 0;
4074 : }
4075 :
4076 2 : static int find_xattr(struct btrfs_root *root,
4077 : struct btrfs_path *path,
4078 2 : struct btrfs_key *key,
4079 : const char *name, int name_len,
4080 : char **data, int *data_len)
4081 : {
4082 : int ret;
4083 : struct find_xattr_ctx ctx;
4084 :
4085 2 : ctx.name = name;
4086 2 : ctx.name_len = name_len;
4087 2 : ctx.found_idx = -1;
4088 2 : ctx.found_data = NULL;
4089 2 : ctx.found_data_len = 0;
4090 :
4091 2 : ret = iterate_dir_item(root, path, key, __find_xattr, &ctx);
4092 2 : if (ret < 0)
4093 : return ret;
4094 :
4095 2 : if (ctx.found_idx == -1)
4096 : return -ENOENT;
4097 2 : if (data) {
4098 1 : *data = ctx.found_data;
4099 1 : *data_len = ctx.found_data_len;
4100 : } else {
4101 1 : kfree(ctx.found_data);
4102 : }
4103 2 : return ctx.found_idx;
4104 : }
4105 :
4106 :
4107 1 : static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4108 : const char *name, int name_len,
4109 : const char *data, int data_len,
4110 : u8 type, void *ctx)
4111 : {
4112 : int ret;
4113 : struct send_ctx *sctx = ctx;
4114 1 : char *found_data = NULL;
4115 1 : int found_data_len = 0;
4116 :
4117 1 : ret = find_xattr(sctx->parent_root, sctx->right_path,
4118 : sctx->cmp_key, name, name_len, &found_data,
4119 : &found_data_len);
4120 1 : if (ret == -ENOENT) {
4121 0 : ret = __process_new_xattr(num, di_key, name, name_len, data,
4122 : data_len, type, ctx);
4123 1 : } else if (ret >= 0) {
4124 1 : if (data_len != found_data_len ||
4125 0 : memcmp(data, found_data, data_len)) {
4126 1 : ret = __process_new_xattr(num, di_key, name, name_len,
4127 : data, data_len, type, ctx);
4128 : } else {
4129 : ret = 0;
4130 : }
4131 : }
4132 :
4133 1 : kfree(found_data);
4134 1 : return ret;
4135 : }
4136 :
4137 1 : static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4138 : const char *name, int name_len,
4139 : const char *data, int data_len,
4140 : u8 type, void *ctx)
4141 : {
4142 : int ret;
4143 : struct send_ctx *sctx = ctx;
4144 :
4145 1 : ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4146 : name, name_len, NULL, NULL);
4147 1 : if (ret == -ENOENT)
4148 0 : ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4149 : data_len, type, ctx);
4150 1 : else if (ret >= 0)
4151 : ret = 0;
4152 :
4153 1 : return ret;
4154 : }
4155 :
4156 1 : static int process_changed_xattr(struct send_ctx *sctx)
4157 : {
4158 : int ret = 0;
4159 :
4160 2 : ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4161 : sctx->cmp_key, __process_changed_new_xattr, sctx);
4162 1 : if (ret < 0)
4163 : goto out;
4164 2 : ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4165 : sctx->cmp_key, __process_changed_deleted_xattr, sctx);
4166 :
4167 : out:
4168 1 : return ret;
4169 : }
4170 :
4171 0 : static int process_all_new_xattrs(struct send_ctx *sctx)
4172 : {
4173 : int ret;
4174 : struct btrfs_root *root;
4175 : struct btrfs_path *path;
4176 : struct btrfs_key key;
4177 : struct btrfs_key found_key;
4178 0 : struct extent_buffer *eb;
4179 : int slot;
4180 :
4181 : path = alloc_path_for_send();
4182 0 : if (!path)
4183 : return -ENOMEM;
4184 :
4185 0 : root = sctx->send_root;
4186 :
4187 0 : key.objectid = sctx->cmp_key->objectid;
4188 0 : key.type = BTRFS_XATTR_ITEM_KEY;
4189 0 : key.offset = 0;
4190 0 : ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4191 0 : if (ret < 0)
4192 : goto out;
4193 :
4194 : while (1) {
4195 0 : eb = path->nodes[0];
4196 0 : slot = path->slots[0];
4197 0 : if (slot >= btrfs_header_nritems(eb)) {
4198 0 : ret = btrfs_next_leaf(root, path);
4199 0 : if (ret < 0) {
4200 : goto out;
4201 0 : } else if (ret > 0) {
4202 : ret = 0;
4203 : break;
4204 : }
4205 0 : continue;
4206 : }
4207 :
4208 0 : btrfs_item_key_to_cpu(eb, &found_key, slot);
4209 0 : if (found_key.objectid != key.objectid ||
4210 0 : found_key.type != key.type) {
4211 : ret = 0;
4212 : goto out;
4213 : }
4214 :
4215 0 : ret = iterate_dir_item(root, path, &found_key,
4216 : __process_new_xattr, sctx);
4217 0 : if (ret < 0)
4218 : goto out;
4219 :
4220 0 : path->slots[0]++;
4221 : }
4222 :
4223 : out:
4224 0 : btrfs_free_path(path);
4225 0 : return ret;
4226 : }
4227 :
4228 21894 : static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4229 : {
4230 21894 : struct btrfs_root *root = sctx->send_root;
4231 21894 : struct btrfs_fs_info *fs_info = root->fs_info;
4232 21894 : struct inode *inode;
4233 : struct page *page;
4234 : char *addr;
4235 : struct btrfs_key key;
4236 21894 : pgoff_t index = offset >> PAGE_CACHE_SHIFT;
4237 : pgoff_t last_index;
4238 21894 : unsigned pg_offset = offset & ~PAGE_CACHE_MASK;
4239 : ssize_t ret = 0;
4240 :
4241 21894 : key.objectid = sctx->cur_ino;
4242 21894 : key.type = BTRFS_INODE_ITEM_KEY;
4243 21894 : key.offset = 0;
4244 :
4245 21894 : inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4246 21894 : if (IS_ERR(inode))
4247 0 : return PTR_ERR(inode);
4248 :
4249 43788 : if (offset + len > i_size_read(inode)) {
4250 2 : if (offset > i_size_read(inode))
4251 : len = 0;
4252 : else
4253 0 : len = offset - i_size_read(inode);
4254 : }
4255 21894 : if (len == 0)
4256 : goto out;
4257 :
4258 21892 : last_index = (offset + len - 1) >> PAGE_CACHE_SHIFT;
4259 :
4260 : /* initial readahead */
4261 21892 : memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4262 21892 : file_ra_state_init(&sctx->ra, inode->i_mapping);
4263 21892 : btrfs_force_ra(inode->i_mapping, &sctx->ra, NULL, index,
4264 21892 : last_index - index + 1);
4265 :
4266 47829 : while (index <= last_index) {
4267 25937 : unsigned cur_len = min_t(unsigned, len,
4268 : PAGE_CACHE_SIZE - pg_offset);
4269 25937 : page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4270 25937 : if (!page) {
4271 : ret = -ENOMEM;
4272 : break;
4273 : }
4274 :
4275 25937 : if (!PageUptodate(page)) {
4276 0 : btrfs_readpage(NULL, page);
4277 0 : lock_page(page);
4278 0 : if (!PageUptodate(page)) {
4279 0 : unlock_page(page);
4280 0 : page_cache_release(page);
4281 : ret = -EIO;
4282 0 : break;
4283 : }
4284 : }
4285 :
4286 : addr = kmap(page);
4287 25937 : memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4288 : kunmap(page);
4289 25937 : unlock_page(page);
4290 25937 : page_cache_release(page);
4291 25937 : index++;
4292 : pg_offset = 0;
4293 25937 : len -= cur_len;
4294 25937 : ret += cur_len;
4295 : }
4296 : out:
4297 21894 : iput(inode);
4298 21894 : return ret;
4299 : }
4300 :
4301 : /*
4302 : * Read some bytes from the current inode/file and send a write command to
4303 : * user space.
4304 : */
4305 21894 : static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4306 : {
4307 : int ret = 0;
4308 : struct fs_path *p;
4309 : ssize_t num_read = 0;
4310 :
4311 21894 : p = fs_path_alloc();
4312 21894 : if (!p)
4313 : return -ENOMEM;
4314 :
4315 21894 : verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset, len);
4316 :
4317 21894 : num_read = fill_read_buf(sctx, offset, len);
4318 21894 : if (num_read <= 0) {
4319 2 : if (num_read < 0)
4320 0 : ret = num_read;
4321 : goto out;
4322 : }
4323 :
4324 21892 : ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4325 21892 : if (ret < 0)
4326 : goto out;
4327 :
4328 21892 : ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4329 21892 : if (ret < 0)
4330 : goto out;
4331 :
4332 21892 : TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4333 21892 : TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4334 21892 : TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4335 :
4336 21892 : ret = send_cmd(sctx);
4337 :
4338 : tlv_put_failure:
4339 : out:
4340 21894 : fs_path_free(p);
4341 21894 : if (ret < 0)
4342 : return ret;
4343 21894 : return num_read;
4344 : }
4345 :
4346 : /*
4347 : * Send a clone command to user space.
4348 : */
4349 5 : static int send_clone(struct send_ctx *sctx,
4350 : u64 offset, u32 len,
4351 : struct clone_root *clone_root)
4352 : {
4353 : int ret = 0;
4354 : struct fs_path *p;
4355 : u64 gen;
4356 :
4357 5 : verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, "
4358 : "clone_inode=%llu, clone_offset=%llu\n", offset, len,
4359 : clone_root->root->objectid, clone_root->ino,
4360 : clone_root->offset);
4361 :
4362 5 : p = fs_path_alloc();
4363 5 : if (!p)
4364 : return -ENOMEM;
4365 :
4366 5 : ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4367 5 : if (ret < 0)
4368 : goto out;
4369 :
4370 5 : ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4371 5 : if (ret < 0)
4372 : goto out;
4373 :
4374 5 : TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4375 10 : TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4376 5 : TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4377 :
4378 5 : if (clone_root->root == sctx->send_root) {
4379 0 : ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4380 : &gen, NULL, NULL, NULL, NULL);
4381 0 : if (ret < 0)
4382 : goto out;
4383 0 : ret = get_cur_path(sctx, clone_root->ino, gen, p);
4384 : } else {
4385 5 : ret = get_inode_path(clone_root->root, clone_root->ino, p);
4386 : }
4387 5 : if (ret < 0)
4388 : goto out;
4389 :
4390 10 : TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4391 : clone_root->root->root_item.uuid);
4392 10 : TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4393 : le64_to_cpu(clone_root->root->root_item.ctransid));
4394 5 : TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4395 10 : TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4396 : clone_root->offset);
4397 :
4398 5 : ret = send_cmd(sctx);
4399 :
4400 : tlv_put_failure:
4401 : out:
4402 5 : fs_path_free(p);
4403 5 : return ret;
4404 : }
4405 :
4406 : /*
4407 : * Send an update extent command to user space.
4408 : */
4409 0 : static int send_update_extent(struct send_ctx *sctx,
4410 : u64 offset, u32 len)
4411 : {
4412 : int ret = 0;
4413 : struct fs_path *p;
4414 :
4415 0 : p = fs_path_alloc();
4416 0 : if (!p)
4417 : return -ENOMEM;
4418 :
4419 0 : ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4420 0 : if (ret < 0)
4421 : goto out;
4422 :
4423 0 : ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4424 0 : if (ret < 0)
4425 : goto out;
4426 :
4427 0 : TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4428 0 : TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4429 0 : TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4430 :
4431 0 : ret = send_cmd(sctx);
4432 :
4433 : tlv_put_failure:
4434 : out:
4435 0 : fs_path_free(p);
4436 0 : return ret;
4437 : }
4438 :
4439 0 : static int send_hole(struct send_ctx *sctx, u64 end)
4440 : {
4441 : struct fs_path *p = NULL;
4442 0 : u64 offset = sctx->cur_inode_last_extent;
4443 : u64 len;
4444 : int ret = 0;
4445 :
4446 0 : p = fs_path_alloc();
4447 0 : if (!p)
4448 : return -ENOMEM;
4449 0 : ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4450 0 : if (ret < 0)
4451 : goto tlv_put_failure;
4452 0 : memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
4453 0 : while (offset < end) {
4454 0 : len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
4455 :
4456 0 : ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4457 0 : if (ret < 0)
4458 : break;
4459 0 : TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4460 0 : TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4461 0 : TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
4462 0 : ret = send_cmd(sctx);
4463 0 : if (ret < 0)
4464 : break;
4465 0 : offset += len;
4466 : }
4467 : tlv_put_failure:
4468 0 : fs_path_free(p);
4469 0 : return ret;
4470 : }
4471 :
4472 21577 : static int send_write_or_clone(struct send_ctx *sctx,
4473 : struct btrfs_path *path,
4474 : struct btrfs_key *key,
4475 : struct clone_root *clone_root)
4476 : {
4477 : int ret = 0;
4478 : struct btrfs_file_extent_item *ei;
4479 21577 : u64 offset = key->offset;
4480 : u64 pos = 0;
4481 : u64 len;
4482 : u32 l;
4483 : u8 type;
4484 21577 : u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
4485 :
4486 43154 : ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4487 : struct btrfs_file_extent_item);
4488 21577 : type = btrfs_file_extent_type(path->nodes[0], ei);
4489 21577 : if (type == BTRFS_FILE_EXTENT_INLINE) {
4490 14 : len = btrfs_file_extent_inline_len(path->nodes[0],
4491 : path->slots[0], ei);
4492 : /*
4493 : * it is possible the inline item won't cover the whole page,
4494 : * but there may be items after this page. Make
4495 : * sure to send the whole thing
4496 : */
4497 14 : len = PAGE_CACHE_ALIGN(len);
4498 : } else {
4499 21563 : len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
4500 : }
4501 :
4502 21577 : if (offset + len > sctx->cur_inode_size)
4503 30 : len = sctx->cur_inode_size - offset;
4504 21577 : if (len == 0) {
4505 : ret = 0;
4506 : goto out;
4507 : }
4508 :
4509 21577 : if (clone_root && IS_ALIGNED(offset + len, bs)) {
4510 5 : ret = send_clone(sctx, offset, len, clone_root);
4511 21572 : } else if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) {
4512 0 : ret = send_update_extent(sctx, offset, len);
4513 : } else {
4514 43464 : while (pos < len) {
4515 21894 : l = len - pos;
4516 21894 : if (l > BTRFS_SEND_READ_SIZE)
4517 : l = BTRFS_SEND_READ_SIZE;
4518 21894 : ret = send_write(sctx, pos + offset, l);
4519 21894 : if (ret < 0)
4520 : goto out;
4521 21894 : if (!ret)
4522 : break;
4523 21892 : pos += ret;
4524 : }
4525 : ret = 0;
4526 : }
4527 : out:
4528 21577 : return ret;
4529 : }
4530 :
4531 42 : static int is_extent_unchanged(struct send_ctx *sctx,
4532 : struct btrfs_path *left_path,
4533 : struct btrfs_key *ekey)
4534 : {
4535 : int ret = 0;
4536 : struct btrfs_key key;
4537 : struct btrfs_path *path = NULL;
4538 : struct extent_buffer *eb;
4539 : int slot;
4540 : struct btrfs_key found_key;
4541 : struct btrfs_file_extent_item *ei;
4542 : u64 left_disknr;
4543 : u64 right_disknr;
4544 : u64 left_offset;
4545 : u64 right_offset;
4546 : u64 left_offset_fixed;
4547 : u64 left_len;
4548 : u64 right_len;
4549 : u64 left_gen;
4550 : u64 right_gen;
4551 : u8 left_type;
4552 : u8 right_type;
4553 :
4554 : path = alloc_path_for_send();
4555 42 : if (!path)
4556 : return -ENOMEM;
4557 :
4558 42 : eb = left_path->nodes[0];
4559 42 : slot = left_path->slots[0];
4560 42 : ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
4561 : left_type = btrfs_file_extent_type(eb, ei);
4562 :
4563 42 : if (left_type != BTRFS_FILE_EXTENT_REG) {
4564 : ret = 0;
4565 : goto out;
4566 : }
4567 : left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
4568 : left_len = btrfs_file_extent_num_bytes(eb, ei);
4569 : left_offset = btrfs_file_extent_offset(eb, ei);
4570 : left_gen = btrfs_file_extent_generation(eb, ei);
4571 :
4572 : /*
4573 : * Following comments will refer to these graphics. L is the left
4574 : * extents which we are checking at the moment. 1-8 are the right
4575 : * extents that we iterate.
4576 : *
4577 : * |-----L-----|
4578 : * |-1-|-2a-|-3-|-4-|-5-|-6-|
4579 : *
4580 : * |-----L-----|
4581 : * |--1--|-2b-|...(same as above)
4582 : *
4583 : * Alternative situation. Happens on files where extents got split.
4584 : * |-----L-----|
4585 : * |-----------7-----------|-6-|
4586 : *
4587 : * Alternative situation. Happens on files which got larger.
4588 : * |-----L-----|
4589 : * |-8-|
4590 : * Nothing follows after 8.
4591 : */
4592 :
4593 33 : key.objectid = ekey->objectid;
4594 33 : key.type = BTRFS_EXTENT_DATA_KEY;
4595 33 : key.offset = ekey->offset;
4596 33 : ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
4597 33 : if (ret < 0)
4598 : goto out;
4599 33 : if (ret) {
4600 : ret = 0;
4601 : goto out;
4602 : }
4603 :
4604 : /*
4605 : * Handle special case where the right side has no extents at all.
4606 : */
4607 33 : eb = path->nodes[0];
4608 33 : slot = path->slots[0];
4609 33 : btrfs_item_key_to_cpu(eb, &found_key, slot);
4610 66 : if (found_key.objectid != key.objectid ||
4611 33 : found_key.type != key.type) {
4612 : /* If we're a hole then just pretend nothing changed */
4613 7 : ret = (left_disknr) ? 0 : 1;
4614 : goto out;
4615 : }
4616 :
4617 : /*
4618 : * We're now on 2a, 2b or 7.
4619 : */
4620 26 : key = found_key;
4621 28 : while (key.offset < ekey->offset + left_len) {
4622 26 : ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
4623 : right_type = btrfs_file_extent_type(eb, ei);
4624 26 : if (right_type != BTRFS_FILE_EXTENT_REG) {
4625 : ret = 0;
4626 : goto out;
4627 : }
4628 :
4629 : right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
4630 : right_len = btrfs_file_extent_num_bytes(eb, ei);
4631 : right_offset = btrfs_file_extent_offset(eb, ei);
4632 : right_gen = btrfs_file_extent_generation(eb, ei);
4633 :
4634 : /*
4635 : * Are we at extent 8? If yes, we know the extent is changed.
4636 : * This may only happen on the first iteration.
4637 : */
4638 26 : if (found_key.offset + right_len <= ekey->offset) {
4639 : /* If we're a hole just pretend nothing changed */
4640 15 : ret = (left_disknr) ? 0 : 1;
4641 : goto out;
4642 : }
4643 :
4644 : left_offset_fixed = left_offset;
4645 11 : if (key.offset < ekey->offset) {
4646 : /* Fix the right offset for 2a and 7. */
4647 5 : right_offset += ekey->offset - key.offset;
4648 : } else {
4649 : /* Fix the left offset for all behind 2a and 2b */
4650 6 : left_offset_fixed += key.offset - ekey->offset;
4651 : }
4652 :
4653 : /*
4654 : * Check if we have the same extent.
4655 : */
4656 22 : if (left_disknr != right_disknr ||
4657 17 : left_offset_fixed != right_offset ||
4658 : left_gen != right_gen) {
4659 : ret = 0;
4660 : goto out;
4661 : }
4662 :
4663 : /*
4664 : * Go to the next extent.
4665 : */
4666 6 : ret = btrfs_next_item(sctx->parent_root, path);
4667 6 : if (ret < 0)
4668 : goto out;
4669 6 : if (!ret) {
4670 3 : eb = path->nodes[0];
4671 3 : slot = path->slots[0];
4672 3 : btrfs_item_key_to_cpu(eb, &found_key, slot);
4673 : }
4674 8 : if (ret || found_key.objectid != key.objectid ||
4675 2 : found_key.type != key.type) {
4676 4 : key.offset += right_len;
4677 : break;
4678 : }
4679 2 : if (found_key.offset != key.offset + right_len) {
4680 : ret = 0;
4681 : goto out;
4682 : }
4683 2 : key = found_key;
4684 : }
4685 :
4686 : /*
4687 : * We're now behind the left extent (treat as unchanged) or at the end
4688 : * of the right side (treat as changed).
4689 : */
4690 6 : if (key.offset >= ekey->offset + left_len)
4691 : ret = 1;
4692 : else
4693 : ret = 0;
4694 :
4695 :
4696 : out:
4697 42 : btrfs_free_path(path);
4698 : return ret;
4699 : }
4700 :
4701 22 : static int get_last_extent(struct send_ctx *sctx, u64 offset)
4702 : {
4703 : struct btrfs_path *path;
4704 22 : struct btrfs_root *root = sctx->send_root;
4705 : struct btrfs_file_extent_item *fi;
4706 : struct btrfs_key key;
4707 : u64 extent_end;
4708 : u8 type;
4709 : int ret;
4710 :
4711 : path = alloc_path_for_send();
4712 22 : if (!path)
4713 : return -ENOMEM;
4714 :
4715 22 : sctx->cur_inode_last_extent = 0;
4716 :
4717 22 : key.objectid = sctx->cur_ino;
4718 22 : key.type = BTRFS_EXTENT_DATA_KEY;
4719 22 : key.offset = offset;
4720 22 : ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
4721 22 : if (ret < 0)
4722 : goto out;
4723 : ret = 0;
4724 22 : btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4725 22 : if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
4726 : goto out;
4727 :
4728 38 : fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
4729 : struct btrfs_file_extent_item);
4730 19 : type = btrfs_file_extent_type(path->nodes[0], fi);
4731 19 : if (type == BTRFS_FILE_EXTENT_INLINE) {
4732 7 : u64 size = btrfs_file_extent_inline_len(path->nodes[0],
4733 : path->slots[0], fi);
4734 7 : extent_end = ALIGN(key.offset + size,
4735 : sctx->send_root->sectorsize);
4736 : } else {
4737 24 : extent_end = key.offset +
4738 12 : btrfs_file_extent_num_bytes(path->nodes[0], fi);
4739 : }
4740 19 : sctx->cur_inode_last_extent = extent_end;
4741 : out:
4742 22 : btrfs_free_path(path);
4743 22 : return ret;
4744 : }
4745 :
4746 21925 : static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
4747 : struct btrfs_key *key)
4748 : {
4749 : struct btrfs_file_extent_item *fi;
4750 : u64 extent_end;
4751 : u8 type;
4752 : int ret = 0;
4753 :
4754 43842 : if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
4755 : return 0;
4756 :
4757 365 : if (sctx->cur_inode_last_extent == (u64)-1) {
4758 17 : ret = get_last_extent(sctx, key->offset - 1);
4759 17 : if (ret)
4760 : return ret;
4761 : }
4762 :
4763 730 : fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
4764 : struct btrfs_file_extent_item);
4765 365 : type = btrfs_file_extent_type(path->nodes[0], fi);
4766 365 : if (type == BTRFS_FILE_EXTENT_INLINE) {
4767 7 : u64 size = btrfs_file_extent_inline_len(path->nodes[0],
4768 : path->slots[0], fi);
4769 7 : extent_end = ALIGN(key->offset + size,
4770 : sctx->send_root->sectorsize);
4771 : } else {
4772 716 : extent_end = key->offset +
4773 358 : btrfs_file_extent_num_bytes(path->nodes[0], fi);
4774 : }
4775 :
4776 366 : if (path->slots[0] == 0 &&
4777 1 : sctx->cur_inode_last_extent < key->offset) {
4778 : /*
4779 : * We might have skipped entire leafs that contained only
4780 : * file extent items for our current inode. These leafs have
4781 : * a generation number smaller (older) than the one in the
4782 : * current leaf and the leaf our last extent came from, and
4783 : * are located between these 2 leafs.
4784 : */
4785 1 : ret = get_last_extent(sctx, key->offset - 1);
4786 1 : if (ret)
4787 : return ret;
4788 : }
4789 :
4790 365 : if (sctx->cur_inode_last_extent < key->offset)
4791 0 : ret = send_hole(sctx, key->offset);
4792 365 : sctx->cur_inode_last_extent = extent_end;
4793 : return ret;
4794 : }
4795 :
4796 23143 : static int process_extent(struct send_ctx *sctx,
4797 21577 : struct btrfs_path *path,
4798 : struct btrfs_key *key)
4799 : {
4800 23143 : struct clone_root *found_clone = NULL;
4801 : int ret = 0;
4802 :
4803 23143 : if (S_ISLNK(sctx->cur_inode_mode))
4804 : return 0;
4805 :
4806 23131 : if (sctx->parent_root && !sctx->cur_inode_new) {
4807 42 : ret = is_extent_unchanged(sctx, path, key);
4808 42 : if (ret < 0)
4809 : goto out;
4810 42 : if (ret) {
4811 : ret = 0;
4812 : goto out_hole;
4813 : }
4814 : } else {
4815 : struct btrfs_file_extent_item *ei;
4816 : u8 type;
4817 :
4818 46178 : ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4819 : struct btrfs_file_extent_item);
4820 23089 : type = btrfs_file_extent_type(path->nodes[0], ei);
4821 23089 : if (type == BTRFS_FILE_EXTENT_PREALLOC ||
4822 : type == BTRFS_FILE_EXTENT_REG) {
4823 : /*
4824 : * The send spec does not have a prealloc command yet,
4825 : * so just leave a hole for prealloc'ed extents until
4826 : * we have enough commands queued up to justify rev'ing
4827 : * the send spec.
4828 : */
4829 23078 : if (type == BTRFS_FILE_EXTENT_PREALLOC) {
4830 : ret = 0;
4831 : goto out;
4832 : }
4833 :
4834 : /* Have a hole, just skip it. */
4835 43114 : if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
4836 : ret = 0;
4837 : goto out;
4838 : }
4839 : }
4840 : }
4841 :
4842 43154 : ret = find_extent_clone(sctx, path, key->objectid, key->offset,
4843 : sctx->cur_inode_size, &found_clone);
4844 21577 : if (ret != -ENOENT && ret < 0)
4845 : goto out;
4846 :
4847 21577 : ret = send_write_or_clone(sctx, path, key, found_clone);
4848 21577 : if (ret)
4849 : goto out;
4850 : out_hole:
4851 21593 : ret = maybe_send_hole(sctx, path, key);
4852 : out:
4853 23131 : return ret;
4854 : }
4855 :
4856 0 : static int process_all_extents(struct send_ctx *sctx)
4857 : {
4858 : int ret;
4859 : struct btrfs_root *root;
4860 : struct btrfs_path *path;
4861 : struct btrfs_key key;
4862 : struct btrfs_key found_key;
4863 0 : struct extent_buffer *eb;
4864 : int slot;
4865 :
4866 0 : root = sctx->send_root;
4867 : path = alloc_path_for_send();
4868 0 : if (!path)
4869 : return -ENOMEM;
4870 :
4871 0 : key.objectid = sctx->cmp_key->objectid;
4872 0 : key.type = BTRFS_EXTENT_DATA_KEY;
4873 0 : key.offset = 0;
4874 0 : ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4875 0 : if (ret < 0)
4876 : goto out;
4877 :
4878 : while (1) {
4879 0 : eb = path->nodes[0];
4880 0 : slot = path->slots[0];
4881 :
4882 0 : if (slot >= btrfs_header_nritems(eb)) {
4883 0 : ret = btrfs_next_leaf(root, path);
4884 0 : if (ret < 0) {
4885 : goto out;
4886 0 : } else if (ret > 0) {
4887 : ret = 0;
4888 : break;
4889 : }
4890 0 : continue;
4891 : }
4892 :
4893 0 : btrfs_item_key_to_cpu(eb, &found_key, slot);
4894 :
4895 0 : if (found_key.objectid != key.objectid ||
4896 0 : found_key.type != key.type) {
4897 : ret = 0;
4898 : goto out;
4899 : }
4900 :
4901 0 : ret = process_extent(sctx, path, &found_key);
4902 0 : if (ret < 0)
4903 : goto out;
4904 :
4905 0 : path->slots[0]++;
4906 : }
4907 :
4908 : out:
4909 0 : btrfs_free_path(path);
4910 0 : return ret;
4911 : }
4912 :
4913 26204 : static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
4914 : int *pending_move,
4915 : int *refs_processed)
4916 : {
4917 : int ret = 0;
4918 :
4919 26204 : if (sctx->cur_ino == 0)
4920 : goto out;
4921 51935 : if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
4922 25770 : sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
4923 : goto out;
4924 77051 : if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
4925 : goto out;
4926 :
4927 308 : ret = process_recorded_refs(sctx, pending_move);
4928 308 : if (ret < 0)
4929 : goto out;
4930 :
4931 308 : *refs_processed = 1;
4932 : out:
4933 26204 : return ret;
4934 : }
4935 :
4936 26204 : static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
4937 : {
4938 : int ret = 0;
4939 : u64 left_mode;
4940 : u64 left_uid;
4941 : u64 left_gid;
4942 : u64 right_mode;
4943 : u64 right_uid;
4944 : u64 right_gid;
4945 : int need_chmod = 0;
4946 : int need_chown = 0;
4947 26204 : int pending_move = 0;
4948 26204 : int refs_processed = 0;
4949 :
4950 26204 : ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
4951 : &refs_processed);
4952 26204 : if (ret < 0)
4953 : goto out;
4954 :
4955 : /*
4956 : * We have processed the refs and thus need to advance send_progress.
4957 : * Now, calls to get_cur_xxx will take the updated refs of the current
4958 : * inode into account.
4959 : *
4960 : * On the other hand, if our current inode is a directory and couldn't
4961 : * be moved/renamed because its parent was renamed/moved too and it has
4962 : * a higher inode number, we can only move/rename our current inode
4963 : * after we moved/renamed its parent. Therefore in this case operate on
4964 : * the old path (pre move/rename) of our current inode, and the
4965 : * move/rename will be performed later.
4966 : */
4967 26204 : if (refs_processed && !pending_move)
4968 271 : sctx->send_progress = sctx->cur_ino + 1;
4969 :
4970 26204 : if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
4971 : goto out;
4972 26108 : if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
4973 : goto out;
4974 :
4975 383 : ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
4976 : &left_mode, &left_uid, &left_gid, NULL);
4977 383 : if (ret < 0)
4978 : goto out;
4979 :
4980 383 : if (!sctx->parent_root || sctx->cur_inode_new) {
4981 : need_chown = 1;
4982 254 : if (!S_ISLNK(sctx->cur_inode_mode))
4983 : need_chmod = 1;
4984 : } else {
4985 129 : ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
4986 : NULL, NULL, &right_mode, &right_uid,
4987 : &right_gid, NULL);
4988 129 : if (ret < 0)
4989 : goto out;
4990 :
4991 129 : if (left_uid != right_uid || left_gid != right_gid)
4992 : need_chown = 1;
4993 129 : if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
4994 : need_chmod = 1;
4995 : }
4996 :
4997 383 : if (S_ISREG(sctx->cur_inode_mode)) {
4998 73 : if (need_send_hole(sctx)) {
4999 37 : if (sctx->cur_inode_last_extent == (u64)-1 ||
5000 : sctx->cur_inode_last_extent <
5001 17 : sctx->cur_inode_size) {
5002 4 : ret = get_last_extent(sctx, (u64)-1);
5003 4 : if (ret)
5004 : goto out;
5005 : }
5006 40 : if (sctx->cur_inode_last_extent <
5007 20 : sctx->cur_inode_size) {
5008 0 : ret = send_hole(sctx, sctx->cur_inode_size);
5009 0 : if (ret)
5010 : goto out;
5011 : }
5012 : }
5013 73 : ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5014 : sctx->cur_inode_size);
5015 73 : if (ret < 0)
5016 : goto out;
5017 : }
5018 :
5019 383 : if (need_chown) {
5020 256 : ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5021 : left_uid, left_gid);
5022 256 : if (ret < 0)
5023 : goto out;
5024 : }
5025 383 : if (need_chmod) {
5026 243 : ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5027 : left_mode);
5028 243 : if (ret < 0)
5029 : goto out;
5030 : }
5031 :
5032 : /*
5033 : * If other directory inodes depended on our current directory
5034 : * inode's move/rename, now do their move/rename operations.
5035 : */
5036 766 : if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5037 346 : ret = apply_children_dir_moves(sctx);
5038 346 : if (ret)
5039 : goto out;
5040 : /*
5041 : * Need to send that every time, no matter if it actually
5042 : * changed between the two trees as we have done changes to
5043 : * the inode before. If our inode is a directory and it's
5044 : * waiting to be moved/renamed, we will send its utimes when
5045 : * it's moved/renamed, therefore we don't need to do it here.
5046 : */
5047 346 : sctx->send_progress = sctx->cur_ino + 1;
5048 346 : ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5049 : if (ret < 0)
5050 : goto out;
5051 : }
5052 :
5053 : out:
5054 26204 : return ret;
5055 : }
5056 :
5057 395 : static int changed_inode(struct send_ctx *sctx,
5058 : enum btrfs_compare_tree_result result)
5059 : {
5060 : int ret = 0;
5061 395 : struct btrfs_key *key = sctx->cmp_key;
5062 : struct btrfs_inode_item *left_ii = NULL;
5063 : struct btrfs_inode_item *right_ii = NULL;
5064 : u64 left_gen = 0;
5065 : u64 right_gen = 0;
5066 :
5067 395 : sctx->cur_ino = key->objectid;
5068 395 : sctx->cur_inode_new_gen = 0;
5069 395 : sctx->cur_inode_last_extent = (u64)-1;
5070 :
5071 : /*
5072 : * Set send_progress to current inode. This will tell all get_cur_xxx
5073 : * functions that the current inode's refs are not updated yet. Later,
5074 : * when process_recorded_refs is finished, it is set to cur_ino + 1.
5075 : */
5076 395 : sctx->send_progress = sctx->cur_ino;
5077 :
5078 790 : if (result == BTRFS_COMPARE_TREE_NEW ||
5079 395 : result == BTRFS_COMPARE_TREE_CHANGED) {
5080 766 : left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
5081 : sctx->left_path->slots[0],
5082 : struct btrfs_inode_item);
5083 383 : left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
5084 : left_ii);
5085 : } else {
5086 24 : right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5087 : sctx->right_path->slots[0],
5088 : struct btrfs_inode_item);
5089 12 : right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5090 : right_ii);
5091 : }
5092 395 : if (result == BTRFS_COMPARE_TREE_CHANGED) {
5093 258 : right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5094 : sctx->right_path->slots[0],
5095 : struct btrfs_inode_item);
5096 :
5097 129 : right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5098 : right_ii);
5099 :
5100 : /*
5101 : * The cur_ino = root dir case is special here. We can't treat
5102 : * the inode as deleted+reused because it would generate a
5103 : * stream that tries to delete/mkdir the root dir.
5104 : */
5105 129 : if (left_gen != right_gen &&
5106 0 : sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5107 0 : sctx->cur_inode_new_gen = 1;
5108 : }
5109 :
5110 395 : if (result == BTRFS_COMPARE_TREE_NEW) {
5111 254 : sctx->cur_inode_gen = left_gen;
5112 254 : sctx->cur_inode_new = 1;
5113 254 : sctx->cur_inode_deleted = 0;
5114 508 : sctx->cur_inode_size = btrfs_inode_size(
5115 254 : sctx->left_path->nodes[0], left_ii);
5116 508 : sctx->cur_inode_mode = btrfs_inode_mode(
5117 254 : sctx->left_path->nodes[0], left_ii);
5118 508 : sctx->cur_inode_rdev = btrfs_inode_rdev(
5119 254 : sctx->left_path->nodes[0], left_ii);
5120 254 : if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5121 231 : ret = send_create_inode_if_needed(sctx);
5122 141 : } else if (result == BTRFS_COMPARE_TREE_DELETED) {
5123 12 : sctx->cur_inode_gen = right_gen;
5124 12 : sctx->cur_inode_new = 0;
5125 12 : sctx->cur_inode_deleted = 1;
5126 24 : sctx->cur_inode_size = btrfs_inode_size(
5127 12 : sctx->right_path->nodes[0], right_ii);
5128 24 : sctx->cur_inode_mode = btrfs_inode_mode(
5129 12 : sctx->right_path->nodes[0], right_ii);
5130 129 : } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
5131 : /*
5132 : * We need to do some special handling in case the inode was
5133 : * reported as changed with a changed generation number. This
5134 : * means that the original inode was deleted and new inode
5135 : * reused the same inum. So we have to treat the old inode as
5136 : * deleted and the new one as new.
5137 : */
5138 129 : if (sctx->cur_inode_new_gen) {
5139 : /*
5140 : * First, process the inode as if it was deleted.
5141 : */
5142 0 : sctx->cur_inode_gen = right_gen;
5143 0 : sctx->cur_inode_new = 0;
5144 0 : sctx->cur_inode_deleted = 1;
5145 0 : sctx->cur_inode_size = btrfs_inode_size(
5146 0 : sctx->right_path->nodes[0], right_ii);
5147 0 : sctx->cur_inode_mode = btrfs_inode_mode(
5148 0 : sctx->right_path->nodes[0], right_ii);
5149 0 : ret = process_all_refs(sctx,
5150 : BTRFS_COMPARE_TREE_DELETED);
5151 0 : if (ret < 0)
5152 : goto out;
5153 :
5154 : /*
5155 : * Now process the inode as if it was new.
5156 : */
5157 0 : sctx->cur_inode_gen = left_gen;
5158 0 : sctx->cur_inode_new = 1;
5159 0 : sctx->cur_inode_deleted = 0;
5160 0 : sctx->cur_inode_size = btrfs_inode_size(
5161 0 : sctx->left_path->nodes[0], left_ii);
5162 0 : sctx->cur_inode_mode = btrfs_inode_mode(
5163 0 : sctx->left_path->nodes[0], left_ii);
5164 0 : sctx->cur_inode_rdev = btrfs_inode_rdev(
5165 0 : sctx->left_path->nodes[0], left_ii);
5166 0 : ret = send_create_inode_if_needed(sctx);
5167 0 : if (ret < 0)
5168 : goto out;
5169 :
5170 0 : ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
5171 0 : if (ret < 0)
5172 : goto out;
5173 : /*
5174 : * Advance send_progress now as we did not get into
5175 : * process_recorded_refs_if_needed in the new_gen case.
5176 : */
5177 0 : sctx->send_progress = sctx->cur_ino + 1;
5178 :
5179 : /*
5180 : * Now process all extents and xattrs of the inode as if
5181 : * they were all new.
5182 : */
5183 0 : ret = process_all_extents(sctx);
5184 0 : if (ret < 0)
5185 : goto out;
5186 0 : ret = process_all_new_xattrs(sctx);
5187 : if (ret < 0)
5188 : goto out;
5189 : } else {
5190 129 : sctx->cur_inode_gen = left_gen;
5191 129 : sctx->cur_inode_new = 0;
5192 129 : sctx->cur_inode_new_gen = 0;
5193 129 : sctx->cur_inode_deleted = 0;
5194 258 : sctx->cur_inode_size = btrfs_inode_size(
5195 129 : sctx->left_path->nodes[0], left_ii);
5196 258 : sctx->cur_inode_mode = btrfs_inode_mode(
5197 129 : sctx->left_path->nodes[0], left_ii);
5198 : }
5199 : }
5200 :
5201 : out:
5202 395 : return ret;
5203 : }
5204 :
5205 : /*
5206 : * We have to process new refs before deleted refs, but compare_trees gives us
5207 : * the new and deleted refs mixed. To fix this, we record the new/deleted refs
5208 : * first and later process them in process_recorded_refs.
5209 : * For the cur_inode_new_gen case, we skip recording completely because
5210 : * changed_inode did already initiate processing of refs. The reason for this is
5211 : * that in this case, compare_tree actually compares the refs of 2 different
5212 : * inodes. To fix this, process_all_refs is used in changed_inode to handle all
5213 : * refs of the right tree as deleted and all refs of the left tree as new.
5214 : */
5215 383 : static int changed_ref(struct send_ctx *sctx,
5216 : enum btrfs_compare_tree_result result)
5217 : {
5218 : int ret = 0;
5219 :
5220 383 : BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5221 :
5222 383 : if (!sctx->cur_inode_new_gen &&
5223 : sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
5224 360 : if (result == BTRFS_COMPARE_TREE_NEW)
5225 284 : ret = record_new_ref(sctx);
5226 76 : else if (result == BTRFS_COMPARE_TREE_DELETED)
5227 61 : ret = record_deleted_ref(sctx);
5228 15 : else if (result == BTRFS_COMPARE_TREE_CHANGED)
5229 15 : ret = record_changed_ref(sctx);
5230 : }
5231 :
5232 383 : return ret;
5233 : }
5234 :
5235 : /*
5236 : * Process new/deleted/changed xattrs. We skip processing in the
5237 : * cur_inode_new_gen case because changed_inode did already initiate processing
5238 : * of xattrs. The reason is the same as in changed_ref
5239 : */
5240 29 : static int changed_xattr(struct send_ctx *sctx,
5241 : enum btrfs_compare_tree_result result)
5242 : {
5243 : int ret = 0;
5244 :
5245 29 : BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5246 :
5247 29 : if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5248 24 : if (result == BTRFS_COMPARE_TREE_NEW)
5249 23 : ret = process_new_xattr(sctx);
5250 1 : else if (result == BTRFS_COMPARE_TREE_DELETED)
5251 0 : ret = process_deleted_xattr(sctx);
5252 1 : else if (result == BTRFS_COMPARE_TREE_CHANGED)
5253 1 : ret = process_changed_xattr(sctx);
5254 : }
5255 :
5256 29 : return ret;
5257 : }
5258 :
5259 : /*
5260 : * Process new/deleted/changed extents. We skip processing in the
5261 : * cur_inode_new_gen case because changed_inode did already initiate processing
5262 : * of extents. The reason is the same as in changed_ref
5263 : */
5264 24559 : static int changed_extent(struct send_ctx *sctx,
5265 : enum btrfs_compare_tree_result result)
5266 : {
5267 : int ret = 0;
5268 :
5269 24559 : BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5270 :
5271 24559 : if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5272 24557 : if (result != BTRFS_COMPARE_TREE_DELETED)
5273 23143 : ret = process_extent(sctx, sctx->left_path,
5274 : sctx->cmp_key);
5275 : }
5276 :
5277 24559 : return ret;
5278 : }
5279 :
5280 102 : static int dir_changed(struct send_ctx *sctx, u64 dir)
5281 : {
5282 : u64 orig_gen, new_gen;
5283 : int ret;
5284 :
5285 102 : ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
5286 : NULL, NULL);
5287 102 : if (ret)
5288 : return ret;
5289 :
5290 102 : ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
5291 : NULL, NULL, NULL);
5292 102 : if (ret)
5293 : return ret;
5294 :
5295 102 : return (orig_gen != new_gen) ? 1 : 0;
5296 : }
5297 :
5298 204 : static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
5299 : struct btrfs_key *key)
5300 : {
5301 : struct btrfs_inode_extref *extref;
5302 : struct extent_buffer *leaf;
5303 : u64 dirid = 0, last_dirid = 0;
5304 : unsigned long ptr;
5305 : u32 item_size;
5306 : u32 cur_offset = 0;
5307 : int ref_name_len;
5308 : int ret = 0;
5309 :
5310 : /* Easy case, just check this one dirid */
5311 102 : if (key->type == BTRFS_INODE_REF_KEY) {
5312 102 : dirid = key->offset;
5313 :
5314 102 : ret = dir_changed(sctx, dirid);
5315 : goto out;
5316 : }
5317 :
5318 0 : leaf = path->nodes[0];
5319 0 : item_size = btrfs_item_size_nr(leaf, path->slots[0]);
5320 0 : ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
5321 0 : while (cur_offset < item_size) {
5322 0 : extref = (struct btrfs_inode_extref *)(ptr +
5323 : cur_offset);
5324 : dirid = btrfs_inode_extref_parent(leaf, extref);
5325 : ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
5326 0 : cur_offset += ref_name_len + sizeof(*extref);
5327 0 : if (dirid == last_dirid)
5328 0 : continue;
5329 0 : ret = dir_changed(sctx, dirid);
5330 0 : if (ret)
5331 : break;
5332 : last_dirid = dirid;
5333 : }
5334 : out:
5335 102 : return ret;
5336 : }
5337 :
5338 : /*
5339 : * Updates compare related fields in sctx and simply forwards to the actual
5340 : * changed_xxx functions.
5341 : */
5342 26814 : static int changed_cb(struct btrfs_root *left_root,
5343 : struct btrfs_root *right_root,
5344 : struct btrfs_path *left_path,
5345 : struct btrfs_path *right_path,
5346 : struct btrfs_key *key,
5347 : enum btrfs_compare_tree_result result,
5348 : void *ctx)
5349 : {
5350 : int ret = 0;
5351 : struct send_ctx *sctx = ctx;
5352 :
5353 26814 : if (result == BTRFS_COMPARE_TREE_SAME) {
5354 649 : if (key->type == BTRFS_INODE_REF_KEY ||
5355 : key->type == BTRFS_INODE_EXTREF_KEY) {
5356 102 : ret = compare_refs(sctx, left_path, key);
5357 102 : if (!ret)
5358 : return 0;
5359 0 : if (ret < 0)
5360 : return ret;
5361 547 : } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
5362 332 : return maybe_send_hole(sctx, left_path, key);
5363 : } else {
5364 : return 0;
5365 : }
5366 : result = BTRFS_COMPARE_TREE_CHANGED;
5367 : ret = 0;
5368 : }
5369 :
5370 26165 : sctx->left_path = left_path;
5371 26165 : sctx->right_path = right_path;
5372 26165 : sctx->cmp_key = key;
5373 :
5374 26165 : ret = finish_inode_if_needed(sctx, 0);
5375 26165 : if (ret < 0)
5376 : goto out;
5377 :
5378 : /* Ignore non-FS objects */
5379 26165 : if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
5380 : key->objectid == BTRFS_FREE_SPACE_OBJECTID)
5381 : goto out;
5382 :
5383 26165 : if (key->type == BTRFS_INODE_ITEM_KEY)
5384 395 : ret = changed_inode(sctx, result);
5385 25770 : else if (key->type == BTRFS_INODE_REF_KEY ||
5386 : key->type == BTRFS_INODE_EXTREF_KEY)
5387 383 : ret = changed_ref(sctx, result);
5388 25387 : else if (key->type == BTRFS_XATTR_ITEM_KEY)
5389 29 : ret = changed_xattr(sctx, result);
5390 25358 : else if (key->type == BTRFS_EXTENT_DATA_KEY)
5391 24559 : ret = changed_extent(sctx, result);
5392 :
5393 : out:
5394 26165 : return ret;
5395 : }
5396 :
5397 23 : static int full_send_tree(struct send_ctx *sctx)
5398 : {
5399 : int ret;
5400 23 : struct btrfs_root *send_root = sctx->send_root;
5401 : struct btrfs_key key;
5402 : struct btrfs_key found_key;
5403 : struct btrfs_path *path;
5404 : struct extent_buffer *eb;
5405 : int slot;
5406 :
5407 : path = alloc_path_for_send();
5408 23 : if (!path)
5409 : return -ENOMEM;
5410 :
5411 23 : key.objectid = BTRFS_FIRST_FREE_OBJECTID;
5412 23 : key.type = BTRFS_INODE_ITEM_KEY;
5413 23 : key.offset = 0;
5414 :
5415 23 : ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
5416 23 : if (ret < 0)
5417 : goto out;
5418 23 : if (ret)
5419 : goto out_finish;
5420 :
5421 : while (1) {
5422 23947 : eb = path->nodes[0];
5423 23947 : slot = path->slots[0];
5424 23947 : btrfs_item_key_to_cpu(eb, &found_key, slot);
5425 :
5426 23947 : ret = changed_cb(send_root, NULL, path, NULL,
5427 : &found_key, BTRFS_COMPARE_TREE_NEW, sctx);
5428 23947 : if (ret < 0)
5429 : goto out;
5430 :
5431 23947 : key.objectid = found_key.objectid;
5432 23947 : key.type = found_key.type;
5433 23947 : key.offset = found_key.offset + 1;
5434 :
5435 : ret = btrfs_next_item(send_root, path);
5436 23947 : if (ret < 0)
5437 : goto out;
5438 23947 : if (ret) {
5439 : ret = 0;
5440 : break;
5441 : }
5442 : }
5443 :
5444 : out_finish:
5445 23 : ret = finish_inode_if_needed(sctx, 1);
5446 :
5447 : out:
5448 23 : btrfs_free_path(path);
5449 23 : return ret;
5450 : }
5451 :
5452 39 : static int send_subvol(struct send_ctx *sctx)
5453 : {
5454 : int ret;
5455 :
5456 39 : if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
5457 39 : ret = send_header(sctx);
5458 39 : if (ret < 0)
5459 : goto out;
5460 : }
5461 :
5462 39 : ret = send_subvol_begin(sctx);
5463 39 : if (ret < 0)
5464 : goto out;
5465 :
5466 39 : if (sctx->parent_root) {
5467 16 : ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
5468 : changed_cb, sctx);
5469 16 : if (ret < 0)
5470 : goto out;
5471 16 : ret = finish_inode_if_needed(sctx, 1);
5472 : if (ret < 0)
5473 : goto out;
5474 : } else {
5475 23 : ret = full_send_tree(sctx);
5476 : if (ret < 0)
5477 : goto out;
5478 : }
5479 :
5480 : out:
5481 : free_recorded_refs(sctx);
5482 39 : return ret;
5483 : }
5484 :
5485 72 : static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
5486 : {
5487 : spin_lock(&root->root_item_lock);
5488 72 : root->send_in_progress--;
5489 : /*
5490 : * Not much left to do, we don't know why it's unbalanced and
5491 : * can't blindly reset it to 0.
5492 : */
5493 72 : if (root->send_in_progress < 0)
5494 0 : btrfs_err(root->fs_info,
5495 : "send_in_progres unbalanced %d root %llu",
5496 : root->send_in_progress, root->root_key.objectid);
5497 : spin_unlock(&root->root_item_lock);
5498 72 : }
5499 :
5500 78 : long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
5501 : {
5502 : int ret = 0;
5503 39 : struct btrfs_root *send_root;
5504 17 : struct btrfs_root *clone_root;
5505 : struct btrfs_fs_info *fs_info;
5506 : struct btrfs_ioctl_send_args *arg = NULL;
5507 : struct btrfs_key key;
5508 : struct send_ctx *sctx = NULL;
5509 : u32 i;
5510 : u64 *clone_sources_tmp = NULL;
5511 : int clone_sources_to_rollback = 0;
5512 : int sort_clone_roots = 0;
5513 : int index;
5514 :
5515 39 : if (!capable(CAP_SYS_ADMIN))
5516 : return -EPERM;
5517 :
5518 39 : send_root = BTRFS_I(file_inode(mnt_file))->root;
5519 39 : fs_info = send_root->fs_info;
5520 :
5521 : /*
5522 : * The subvolume must remain read-only during send, protect against
5523 : * making it RW. This also protects against deletion.
5524 : */
5525 : spin_lock(&send_root->root_item_lock);
5526 39 : send_root->send_in_progress++;
5527 : spin_unlock(&send_root->root_item_lock);
5528 :
5529 : /*
5530 : * This is done when we lookup the root, it should already be complete
5531 : * by the time we get here.
5532 : */
5533 39 : WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
5534 :
5535 : /*
5536 : * Userspace tools do the checks and warn the user if it's
5537 : * not RO.
5538 : */
5539 39 : if (!btrfs_root_readonly(send_root)) {
5540 : ret = -EPERM;
5541 : goto out;
5542 : }
5543 :
5544 39 : arg = memdup_user(arg_, sizeof(*arg));
5545 39 : if (IS_ERR(arg)) {
5546 0 : ret = PTR_ERR(arg);
5547 : arg = NULL;
5548 0 : goto out;
5549 : }
5550 :
5551 78 : if (!access_ok(VERIFY_READ, arg->clone_sources,
5552 : sizeof(*arg->clone_sources) *
5553 : arg->clone_sources_count)) {
5554 : ret = -EFAULT;
5555 : goto out;
5556 : }
5557 :
5558 39 : if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
5559 : ret = -EINVAL;
5560 : goto out;
5561 : }
5562 :
5563 39 : sctx = kzalloc(sizeof(struct send_ctx), GFP_NOFS);
5564 39 : if (!sctx) {
5565 : ret = -ENOMEM;
5566 : goto out;
5567 : }
5568 :
5569 39 : INIT_LIST_HEAD(&sctx->new_refs);
5570 39 : INIT_LIST_HEAD(&sctx->deleted_refs);
5571 39 : INIT_RADIX_TREE(&sctx->name_cache, GFP_NOFS);
5572 39 : INIT_LIST_HEAD(&sctx->name_cache_list);
5573 :
5574 39 : sctx->flags = arg->flags;
5575 :
5576 39 : sctx->send_filp = fget(arg->send_fd);
5577 39 : if (!sctx->send_filp) {
5578 : ret = -EBADF;
5579 : goto out;
5580 : }
5581 :
5582 39 : sctx->send_root = send_root;
5583 : /*
5584 : * Unlikely but possible, if the subvolume is marked for deletion but
5585 : * is slow to remove the directory entry, send can still be started
5586 : */
5587 78 : if (btrfs_root_dead(sctx->send_root)) {
5588 : ret = -EPERM;
5589 : goto out;
5590 : }
5591 :
5592 39 : sctx->clone_roots_cnt = arg->clone_sources_count;
5593 :
5594 39 : sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
5595 39 : sctx->send_buf = vmalloc(sctx->send_max_size);
5596 39 : if (!sctx->send_buf) {
5597 : ret = -ENOMEM;
5598 : goto out;
5599 : }
5600 :
5601 39 : sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE);
5602 39 : if (!sctx->read_buf) {
5603 : ret = -ENOMEM;
5604 : goto out;
5605 : }
5606 :
5607 39 : sctx->pending_dir_moves = RB_ROOT;
5608 39 : sctx->waiting_dir_moves = RB_ROOT;
5609 39 : sctx->orphan_dirs = RB_ROOT;
5610 :
5611 39 : sctx->clone_roots = vzalloc(sizeof(struct clone_root) *
5612 39 : (arg->clone_sources_count + 1));
5613 39 : if (!sctx->clone_roots) {
5614 : ret = -ENOMEM;
5615 : goto out;
5616 : }
5617 :
5618 39 : if (arg->clone_sources_count) {
5619 16 : clone_sources_tmp = vmalloc(arg->clone_sources_count *
5620 : sizeof(*arg->clone_sources));
5621 16 : if (!clone_sources_tmp) {
5622 : ret = -ENOMEM;
5623 : goto out;
5624 : }
5625 :
5626 32 : ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
5627 16 : arg->clone_sources_count *
5628 : sizeof(*arg->clone_sources));
5629 16 : if (ret) {
5630 : ret = -EFAULT;
5631 : goto out;
5632 : }
5633 :
5634 33 : for (i = 0; i < arg->clone_sources_count; i++) {
5635 17 : key.objectid = clone_sources_tmp[i];
5636 17 : key.type = BTRFS_ROOT_ITEM_KEY;
5637 17 : key.offset = (u64)-1;
5638 :
5639 17 : index = srcu_read_lock(&fs_info->subvol_srcu);
5640 :
5641 : clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
5642 17 : if (IS_ERR(clone_root)) {
5643 : srcu_read_unlock(&fs_info->subvol_srcu, index);
5644 0 : ret = PTR_ERR(clone_root);
5645 0 : goto out;
5646 : }
5647 17 : clone_sources_to_rollback = i + 1;
5648 : spin_lock(&clone_root->root_item_lock);
5649 17 : clone_root->send_in_progress++;
5650 17 : if (!btrfs_root_readonly(clone_root)) {
5651 : spin_unlock(&clone_root->root_item_lock);
5652 : srcu_read_unlock(&fs_info->subvol_srcu, index);
5653 : ret = -EPERM;
5654 0 : goto out;
5655 : }
5656 : spin_unlock(&clone_root->root_item_lock);
5657 : srcu_read_unlock(&fs_info->subvol_srcu, index);
5658 :
5659 17 : sctx->clone_roots[i].root = clone_root;
5660 : }
5661 16 : vfree(clone_sources_tmp);
5662 : clone_sources_tmp = NULL;
5663 : }
5664 :
5665 39 : if (arg->parent_root) {
5666 16 : key.objectid = arg->parent_root;
5667 16 : key.type = BTRFS_ROOT_ITEM_KEY;
5668 16 : key.offset = (u64)-1;
5669 :
5670 16 : index = srcu_read_lock(&fs_info->subvol_srcu);
5671 :
5672 16 : sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
5673 32 : if (IS_ERR(sctx->parent_root)) {
5674 : srcu_read_unlock(&fs_info->subvol_srcu, index);
5675 0 : ret = PTR_ERR(sctx->parent_root);
5676 0 : goto out;
5677 : }
5678 :
5679 : spin_lock(&sctx->parent_root->root_item_lock);
5680 16 : sctx->parent_root->send_in_progress++;
5681 48 : if (!btrfs_root_readonly(sctx->parent_root) ||
5682 : btrfs_root_dead(sctx->parent_root)) {
5683 : spin_unlock(&sctx->parent_root->root_item_lock);
5684 : srcu_read_unlock(&fs_info->subvol_srcu, index);
5685 : ret = -EPERM;
5686 0 : goto out;
5687 : }
5688 : spin_unlock(&sctx->parent_root->root_item_lock);
5689 :
5690 : srcu_read_unlock(&fs_info->subvol_srcu, index);
5691 : }
5692 :
5693 : /*
5694 : * Clones from send_root are allowed, but only if the clone source
5695 : * is behind the current send position. This is checked while searching
5696 : * for possible clone sources.
5697 : */
5698 39 : sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
5699 :
5700 : /* We do a bsearch later */
5701 39 : sort(sctx->clone_roots, sctx->clone_roots_cnt,
5702 : sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
5703 : NULL);
5704 : sort_clone_roots = 1;
5705 :
5706 39 : current->journal_info = (void *)BTRFS_SEND_TRANS_STUB;
5707 39 : ret = send_subvol(sctx);
5708 39 : current->journal_info = NULL;
5709 39 : if (ret < 0)
5710 : goto out;
5711 :
5712 39 : if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
5713 39 : ret = begin_cmd(sctx, BTRFS_SEND_C_END);
5714 39 : if (ret < 0)
5715 : goto out;
5716 39 : ret = send_cmd(sctx);
5717 : if (ret < 0)
5718 : goto out;
5719 : }
5720 :
5721 : out:
5722 39 : WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
5723 39 : while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
5724 : struct rb_node *n;
5725 : struct pending_dir_move *pm;
5726 :
5727 0 : n = rb_first(&sctx->pending_dir_moves);
5728 : pm = rb_entry(n, struct pending_dir_move, node);
5729 0 : while (!list_empty(&pm->list)) {
5730 : struct pending_dir_move *pm2;
5731 :
5732 0 : pm2 = list_first_entry(&pm->list,
5733 : struct pending_dir_move, list);
5734 0 : free_pending_move(sctx, pm2);
5735 : }
5736 0 : free_pending_move(sctx, pm);
5737 : }
5738 :
5739 39 : WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
5740 39 : while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
5741 : struct rb_node *n;
5742 : struct waiting_dir_move *dm;
5743 :
5744 0 : n = rb_first(&sctx->waiting_dir_moves);
5745 : dm = rb_entry(n, struct waiting_dir_move, node);
5746 0 : rb_erase(&dm->node, &sctx->waiting_dir_moves);
5747 0 : kfree(dm);
5748 : }
5749 :
5750 39 : WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
5751 39 : while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
5752 : struct rb_node *n;
5753 : struct orphan_dir_info *odi;
5754 :
5755 0 : n = rb_first(&sctx->orphan_dirs);
5756 : odi = rb_entry(n, struct orphan_dir_info, node);
5757 0 : free_orphan_dir_info(sctx, odi);
5758 : }
5759 :
5760 39 : if (sort_clone_roots) {
5761 56 : for (i = 0; i < sctx->clone_roots_cnt; i++)
5762 56 : btrfs_root_dec_send_in_progress(
5763 56 : sctx->clone_roots[i].root);
5764 : } else {
5765 0 : for (i = 0; sctx && i < clone_sources_to_rollback; i++)
5766 0 : btrfs_root_dec_send_in_progress(
5767 0 : sctx->clone_roots[i].root);
5768 :
5769 0 : btrfs_root_dec_send_in_progress(send_root);
5770 : }
5771 78 : if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
5772 16 : btrfs_root_dec_send_in_progress(sctx->parent_root);
5773 :
5774 39 : kfree(arg);
5775 39 : vfree(clone_sources_tmp);
5776 :
5777 39 : if (sctx) {
5778 39 : if (sctx->send_filp)
5779 39 : fput(sctx->send_filp);
5780 :
5781 39 : vfree(sctx->clone_roots);
5782 39 : vfree(sctx->send_buf);
5783 39 : vfree(sctx->read_buf);
5784 :
5785 39 : name_cache_free(sctx);
5786 :
5787 39 : kfree(sctx);
5788 : }
5789 :
5790 39 : return ret;
5791 : }
|