Line data Source code
1 : /*
2 : * Copyright (C) 2008 Oracle. All rights reserved.
3 : *
4 : * This program is free software; you can redistribute it and/or
5 : * modify it under the terms of the GNU General Public
6 : * License v2 as published by the Free Software Foundation.
7 : *
8 : * This program is distributed in the hope that it will be useful,
9 : * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 : * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 : * General Public License for more details.
12 : *
13 : * You should have received a copy of the GNU General Public
14 : * License along with this program; if not, write to the
15 : * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 : * Boston, MA 021110-1307, USA.
17 : */
18 :
19 : #include <linux/sched.h>
20 : #include <linux/slab.h>
21 : #include <linux/blkdev.h>
22 : #include <linux/list_sort.h>
23 : #include "tree-log.h"
24 : #include "disk-io.h"
25 : #include "locking.h"
26 : #include "print-tree.h"
27 : #include "backref.h"
28 : #include "hash.h"
29 :
30 : /* magic values for the inode_only field in btrfs_log_inode:
31 : *
32 : * LOG_INODE_ALL means to log everything
33 : * LOG_INODE_EXISTS means to log just enough to recreate the inode
34 : * during log replay
35 : */
36 : #define LOG_INODE_ALL 0
37 : #define LOG_INODE_EXISTS 1
38 :
39 : /*
40 : * directory trouble cases
41 : *
42 : * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
43 : * log, we must force a full commit before doing an fsync of the directory
44 : * where the unlink was done.
45 : * ---> record transid of last unlink/rename per directory
46 : *
47 : * mkdir foo/some_dir
48 : * normal commit
49 : * rename foo/some_dir foo2/some_dir
50 : * mkdir foo/some_dir
51 : * fsync foo/some_dir/some_file
52 : *
53 : * The fsync above will unlink the original some_dir without recording
54 : * it in its new location (foo2). After a crash, some_dir will be gone
55 : * unless the fsync of some_file forces a full commit
56 : *
57 : * 2) we must log any new names for any file or dir that is in the fsync
58 : * log. ---> check inode while renaming/linking.
59 : *
60 : * 2a) we must log any new names for any file or dir during rename
61 : * when the directory they are being removed from was logged.
62 : * ---> check inode and old parent dir during rename
63 : *
64 : * 2a is actually the more important variant. With the extra logging
65 : * a crash might unlink the old name without recreating the new one
66 : *
67 : * 3) after a crash, we must go through any directories with a link count
68 : * of zero and redo the rm -rf
69 : *
70 : * mkdir f1/foo
71 : * normal commit
72 : * rm -rf f1/foo
73 : * fsync(f1)
74 : *
75 : * The directory f1 was fully removed from the FS, but fsync was never
76 : * called on f1, only its parent dir. After a crash the rm -rf must
77 : * be replayed. This must be able to recurse down the entire
78 : * directory tree. The inode link count fixup code takes care of the
79 : * ugly details.
80 : */
81 :
82 : /*
83 : * stages for the tree walking. The first
84 : * stage (0) is to only pin down the blocks we find
85 : * the second stage (1) is to make sure that all the inodes
86 : * we find in the log are created in the subvolume.
87 : *
88 : * The last stage is to deal with directories and links and extents
89 : * and all the other fun semantics
90 : */
91 : #define LOG_WALK_PIN_ONLY 0
92 : #define LOG_WALK_REPLAY_INODES 1
93 : #define LOG_WALK_REPLAY_DIR_INDEX 2
94 : #define LOG_WALK_REPLAY_ALL 3
95 :
96 : static int btrfs_log_inode(struct btrfs_trans_handle *trans,
97 : struct btrfs_root *root, struct inode *inode,
98 : int inode_only,
99 : const loff_t start,
100 : const loff_t end);
101 : static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
102 : struct btrfs_root *root,
103 : struct btrfs_path *path, u64 objectid);
104 : static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
105 : struct btrfs_root *root,
106 : struct btrfs_root *log,
107 : struct btrfs_path *path,
108 : u64 dirid, int del_all);
109 :
110 : /*
111 : * tree logging is a special write ahead log used to make sure that
112 : * fsyncs and O_SYNCs can happen without doing full tree commits.
113 : *
114 : * Full tree commits are expensive because they require commonly
115 : * modified blocks to be recowed, creating many dirty pages in the
116 : * extent tree an 4x-6x higher write load than ext3.
117 : *
118 : * Instead of doing a tree commit on every fsync, we use the
119 : * key ranges and transaction ids to find items for a given file or directory
120 : * that have changed in this transaction. Those items are copied into
121 : * a special tree (one per subvolume root), that tree is written to disk
122 : * and then the fsync is considered complete.
123 : *
124 : * After a crash, items are copied out of the log-tree back into the
125 : * subvolume tree. Any file data extents found are recorded in the extent
126 : * allocation tree, and the log-tree freed.
127 : *
128 : * The log tree is read three times, once to pin down all the extents it is
129 : * using in ram and once, once to create all the inodes logged in the tree
130 : * and once to do all the other items.
131 : */
132 :
133 : /*
134 : * start a sub transaction and setup the log tree
135 : * this increments the log tree writer count to make the people
136 : * syncing the tree wait for us to finish
137 : */
138 2925 : static int start_log_trans(struct btrfs_trans_handle *trans,
139 : struct btrfs_root *root,
140 : struct btrfs_log_ctx *ctx)
141 : {
142 : int index;
143 : int ret;
144 :
145 1575 : mutex_lock(&root->log_mutex);
146 1575 : if (root->log_root) {
147 2700 : if (btrfs_need_log_full_commit(root->fs_info, trans)) {
148 : ret = -EAGAIN;
149 : goto out;
150 : }
151 1350 : if (!root->log_start_pid) {
152 1277 : root->log_start_pid = current->pid;
153 : clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
154 73 : } else if (root->log_start_pid != current->pid) {
155 : set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
156 : }
157 :
158 1350 : atomic_inc(&root->log_batch);
159 1350 : atomic_inc(&root->log_writers);
160 1350 : if (ctx) {
161 1259 : index = root->log_transid % 2;
162 1259 : list_add_tail(&ctx->list, &root->log_ctxs[index]);
163 1259 : ctx->log_transid = root->log_transid;
164 : }
165 1350 : mutex_unlock(&root->log_mutex);
166 1350 : return 0;
167 : }
168 :
169 : ret = 0;
170 225 : mutex_lock(&root->fs_info->tree_log_mutex);
171 225 : if (!root->fs_info->log_root_tree)
172 225 : ret = btrfs_init_log_root_tree(trans, root->fs_info);
173 225 : mutex_unlock(&root->fs_info->tree_log_mutex);
174 225 : if (ret)
175 : goto out;
176 :
177 225 : if (!root->log_root) {
178 225 : ret = btrfs_add_log_tree(trans, root);
179 225 : if (ret)
180 : goto out;
181 : }
182 : clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
183 225 : root->log_start_pid = current->pid;
184 225 : atomic_inc(&root->log_batch);
185 225 : atomic_inc(&root->log_writers);
186 225 : if (ctx) {
187 224 : index = root->log_transid % 2;
188 224 : list_add_tail(&ctx->list, &root->log_ctxs[index]);
189 224 : ctx->log_transid = root->log_transid;
190 : }
191 : out:
192 225 : mutex_unlock(&root->log_mutex);
193 225 : return ret;
194 : }
195 :
196 : /*
197 : * returns 0 if there was a log transaction running and we were able
198 : * to join, or returns -ENOENT if there were not transactions
199 : * in progress
200 : */
201 200 : static int join_running_log_trans(struct btrfs_root *root)
202 : {
203 : int ret = -ENOENT;
204 :
205 200 : smp_mb();
206 200 : if (!root->log_root)
207 : return -ENOENT;
208 :
209 200 : mutex_lock(&root->log_mutex);
210 200 : if (root->log_root) {
211 : ret = 0;
212 200 : atomic_inc(&root->log_writers);
213 : }
214 200 : mutex_unlock(&root->log_mutex);
215 200 : return ret;
216 : }
217 :
218 : /*
219 : * This either makes the current running log transaction wait
220 : * until you call btrfs_end_log_trans() or it makes any future
221 : * log transactions wait until you call btrfs_end_log_trans()
222 : */
223 2311 : int btrfs_pin_log_trans(struct btrfs_root *root)
224 : {
225 : int ret = -ENOENT;
226 :
227 2311 : mutex_lock(&root->log_mutex);
228 2311 : atomic_inc(&root->log_writers);
229 2311 : mutex_unlock(&root->log_mutex);
230 2311 : return ret;
231 : }
232 :
233 : /*
234 : * indicate we're done making changes to the log tree
235 : * and wake up anyone waiting to do a sync
236 : */
237 4086 : void btrfs_end_log_trans(struct btrfs_root *root)
238 : {
239 8172 : if (atomic_dec_and_test(&root->log_writers)) {
240 3884 : smp_mb();
241 3884 : if (waitqueue_active(&root->log_writer_wait))
242 1 : wake_up(&root->log_writer_wait);
243 : }
244 4086 : }
245 :
246 :
247 : /*
248 : * the walk control struct is used to pass state down the chain when
249 : * processing the log tree. The stage field tells us which part
250 : * of the log tree processing we are currently doing. The others
251 : * are state fields used for that specific part
252 : */
253 : struct walk_control {
254 : /* should we free the extent on disk when done? This is used
255 : * at transaction commit time while freeing a log tree
256 : */
257 : int free;
258 :
259 : /* should we write out the extent buffer? This is used
260 : * while flushing the log tree to disk during a sync
261 : */
262 : int write;
263 :
264 : /* should we wait for the extent buffer io to finish? Also used
265 : * while flushing the log tree to disk for a sync
266 : */
267 : int wait;
268 :
269 : /* pin only walk, we record which extents on disk belong to the
270 : * log trees
271 : */
272 : int pin;
273 :
274 : /* what stage of the replay code we're currently in */
275 : int stage;
276 :
277 : /* the root we are currently replaying */
278 : struct btrfs_root *replay_dest;
279 :
280 : /* the trans handle for the current replay */
281 : struct btrfs_trans_handle *trans;
282 :
283 : /* the function that gets used to process blocks we find in the
284 : * tree. Note the extent_buffer might not be up to date when it is
285 : * passed in, and it must be checked or read if you need the data
286 : * inside it
287 : */
288 : int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
289 : struct walk_control *wc, u64 gen);
290 : };
291 :
292 : /*
293 : * process_func used to pin down extents, write them or wait on them
294 : */
295 505 : static int process_one_buffer(struct btrfs_root *log,
296 0 : struct extent_buffer *eb,
297 : struct walk_control *wc, u64 gen)
298 : {
299 : int ret = 0;
300 :
301 : /*
302 : * If this fs is mixed then we need to be able to process the leaves to
303 : * pin down any logged extents, so we have to read the block.
304 : */
305 1010 : if (btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) {
306 128 : ret = btrfs_read_buffer(eb, gen);
307 128 : if (ret)
308 : return ret;
309 : }
310 :
311 505 : if (wc->pin)
312 0 : ret = btrfs_pin_extent_for_log_replay(log->fs_info->extent_root,
313 0 : eb->start, eb->len);
314 :
315 505 : if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
316 505 : if (wc->pin && btrfs_header_level(eb) == 0)
317 0 : ret = btrfs_exclude_logged_extents(log, eb);
318 505 : if (wc->write)
319 0 : btrfs_write_tree_block(eb);
320 505 : if (wc->wait)
321 0 : btrfs_wait_tree_block_writeback(eb);
322 : }
323 505 : return ret;
324 : }
325 :
326 : /*
327 : * Item overwrite used by replay and tree logging. eb, slot and key all refer
328 : * to the src data we are copying out.
329 : *
330 : * root is the tree we are copying into, and path is a scratch
331 : * path for use in this function (it should be released on entry and
332 : * will be released on exit).
333 : *
334 : * If the key is already in the destination tree the existing item is
335 : * overwritten. If the existing item isn't big enough, it is extended.
336 : * If it is too large, it is truncated.
337 : *
338 : * If the key isn't in the destination yet, a new item is inserted.
339 : */
340 0 : static noinline int overwrite_item(struct btrfs_trans_handle *trans,
341 : struct btrfs_root *root,
342 : struct btrfs_path *path,
343 : struct extent_buffer *eb, int slot,
344 : struct btrfs_key *key)
345 : {
346 : int ret;
347 : u32 item_size;
348 : u64 saved_i_size = 0;
349 : int save_old_i_size = 0;
350 : unsigned long src_ptr;
351 : unsigned long dst_ptr;
352 : int overwrite_root = 0;
353 0 : bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
354 :
355 0 : if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
356 : overwrite_root = 1;
357 :
358 : item_size = btrfs_item_size_nr(eb, slot);
359 0 : src_ptr = btrfs_item_ptr_offset(eb, slot);
360 :
361 : /* look for the key in the destination tree */
362 0 : ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
363 0 : if (ret < 0)
364 : return ret;
365 :
366 0 : if (ret == 0) {
367 : char *src_copy;
368 : char *dst_copy;
369 0 : u32 dst_size = btrfs_item_size_nr(path->nodes[0],
370 : path->slots[0]);
371 0 : if (dst_size != item_size)
372 : goto insert;
373 :
374 0 : if (item_size == 0) {
375 0 : btrfs_release_path(path);
376 0 : return 0;
377 : }
378 0 : dst_copy = kmalloc(item_size, GFP_NOFS);
379 : src_copy = kmalloc(item_size, GFP_NOFS);
380 0 : if (!dst_copy || !src_copy) {
381 0 : btrfs_release_path(path);
382 0 : kfree(dst_copy);
383 0 : kfree(src_copy);
384 0 : return -ENOMEM;
385 : }
386 :
387 0 : read_extent_buffer(eb, src_copy, src_ptr, item_size);
388 :
389 0 : dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
390 0 : read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
391 : item_size);
392 0 : ret = memcmp(dst_copy, src_copy, item_size);
393 :
394 0 : kfree(dst_copy);
395 0 : kfree(src_copy);
396 : /*
397 : * they have the same contents, just return, this saves
398 : * us from cowing blocks in the destination tree and doing
399 : * extra writes that may not have been done by a previous
400 : * sync
401 : */
402 0 : if (ret == 0) {
403 0 : btrfs_release_path(path);
404 0 : return 0;
405 : }
406 :
407 : /*
408 : * We need to load the old nbytes into the inode so when we
409 : * replay the extents we've logged we get the right nbytes.
410 : */
411 0 : if (inode_item) {
412 : struct btrfs_inode_item *item;
413 : u64 nbytes;
414 : u32 mode;
415 :
416 0 : item = btrfs_item_ptr(path->nodes[0], path->slots[0],
417 : struct btrfs_inode_item);
418 0 : nbytes = btrfs_inode_nbytes(path->nodes[0], item);
419 0 : item = btrfs_item_ptr(eb, slot,
420 : struct btrfs_inode_item);
421 : btrfs_set_inode_nbytes(eb, item, nbytes);
422 :
423 : /*
424 : * If this is a directory we need to reset the i_size to
425 : * 0 so that we can set it up properly when replaying
426 : * the rest of the items in this log.
427 : */
428 : mode = btrfs_inode_mode(eb, item);
429 0 : if (S_ISDIR(mode))
430 : btrfs_set_inode_size(eb, item, 0);
431 : }
432 0 : } else if (inode_item) {
433 : struct btrfs_inode_item *item;
434 : u32 mode;
435 :
436 : /*
437 : * New inode, set nbytes to 0 so that the nbytes comes out
438 : * properly when we replay the extents.
439 : */
440 0 : item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
441 : btrfs_set_inode_nbytes(eb, item, 0);
442 :
443 : /*
444 : * If this is a directory we need to reset the i_size to 0 so
445 : * that we can set it up properly when replaying the rest of
446 : * the items in this log.
447 : */
448 : mode = btrfs_inode_mode(eb, item);
449 0 : if (S_ISDIR(mode))
450 : btrfs_set_inode_size(eb, item, 0);
451 : }
452 : insert:
453 0 : btrfs_release_path(path);
454 : /* try to insert the key into the destination tree */
455 : ret = btrfs_insert_empty_item(trans, root, path,
456 : key, item_size);
457 :
458 : /* make sure any existing item is the correct size */
459 0 : if (ret == -EEXIST) {
460 : u32 found_size;
461 0 : found_size = btrfs_item_size_nr(path->nodes[0],
462 : path->slots[0]);
463 0 : if (found_size > item_size)
464 0 : btrfs_truncate_item(root, path, item_size, 1);
465 0 : else if (found_size < item_size)
466 0 : btrfs_extend_item(root, path,
467 : item_size - found_size);
468 0 : } else if (ret) {
469 : return ret;
470 : }
471 0 : dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
472 : path->slots[0]);
473 :
474 : /* don't overwrite an existing inode if the generation number
475 : * was logged as zero. This is done when the tree logging code
476 : * is just logging an inode to make sure it exists after recovery.
477 : *
478 : * Also, don't overwrite i_size on directories during replay.
479 : * log replay inserts and removes directory items based on the
480 : * state of the tree found in the subvolume, and i_size is modified
481 : * as it goes
482 : */
483 0 : if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
484 : struct btrfs_inode_item *src_item;
485 : struct btrfs_inode_item *dst_item;
486 :
487 0 : src_item = (struct btrfs_inode_item *)src_ptr;
488 0 : dst_item = (struct btrfs_inode_item *)dst_ptr;
489 :
490 0 : if (btrfs_inode_generation(eb, src_item) == 0)
491 : goto no_copy;
492 :
493 0 : if (overwrite_root &&
494 0 : S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
495 0 : S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
496 : save_old_i_size = 1;
497 0 : saved_i_size = btrfs_inode_size(path->nodes[0],
498 : dst_item);
499 : }
500 : }
501 :
502 0 : copy_extent_buffer(path->nodes[0], eb, dst_ptr,
503 : src_ptr, item_size);
504 :
505 0 : if (save_old_i_size) {
506 : struct btrfs_inode_item *dst_item;
507 0 : dst_item = (struct btrfs_inode_item *)dst_ptr;
508 0 : btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
509 : }
510 :
511 : /* make sure the generation is filled in */
512 0 : if (key->type == BTRFS_INODE_ITEM_KEY) {
513 : struct btrfs_inode_item *dst_item;
514 0 : dst_item = (struct btrfs_inode_item *)dst_ptr;
515 0 : if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
516 0 : btrfs_set_inode_generation(path->nodes[0], dst_item,
517 : trans->transid);
518 : }
519 : }
520 : no_copy:
521 0 : btrfs_mark_buffer_dirty(path->nodes[0]);
522 0 : btrfs_release_path(path);
523 0 : return 0;
524 : }
525 :
526 : /*
527 : * simple helper to read an inode off the disk from a given root
528 : * This can only be called for subvolume roots and not for the log
529 : */
530 0 : static noinline struct inode *read_one_inode(struct btrfs_root *root,
531 : u64 objectid)
532 : {
533 : struct btrfs_key key;
534 : struct inode *inode;
535 :
536 0 : key.objectid = objectid;
537 0 : key.type = BTRFS_INODE_ITEM_KEY;
538 0 : key.offset = 0;
539 0 : inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
540 0 : if (IS_ERR(inode)) {
541 : inode = NULL;
542 0 : } else if (is_bad_inode(inode)) {
543 0 : iput(inode);
544 : inode = NULL;
545 : }
546 0 : return inode;
547 : }
548 :
549 : /* replays a single extent in 'eb' at 'slot' with 'key' into the
550 : * subvolume 'root'. path is released on entry and should be released
551 : * on exit.
552 : *
553 : * extents in the log tree have not been allocated out of the extent
554 : * tree yet. So, this completes the allocation, taking a reference
555 : * as required if the extent already exists or creating a new extent
556 : * if it isn't in the extent allocation tree yet.
557 : *
558 : * The extent is inserted into the file, dropping any existing extents
559 : * from the file that overlap the new one.
560 : */
561 0 : static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
562 : struct btrfs_root *root,
563 : struct btrfs_path *path,
564 : struct extent_buffer *eb, int slot,
565 : struct btrfs_key *key)
566 : {
567 : int found_type;
568 : u64 extent_end;
569 0 : u64 start = key->offset;
570 : u64 nbytes = 0;
571 : struct btrfs_file_extent_item *item;
572 : struct inode *inode = NULL;
573 : unsigned long size;
574 : int ret = 0;
575 :
576 0 : item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
577 0 : found_type = btrfs_file_extent_type(eb, item);
578 :
579 0 : if (found_type == BTRFS_FILE_EXTENT_REG ||
580 : found_type == BTRFS_FILE_EXTENT_PREALLOC) {
581 : nbytes = btrfs_file_extent_num_bytes(eb, item);
582 0 : extent_end = start + nbytes;
583 :
584 : /*
585 : * We don't add to the inodes nbytes if we are prealloc or a
586 : * hole.
587 : */
588 0 : if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
589 : nbytes = 0;
590 0 : } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
591 0 : size = btrfs_file_extent_inline_len(eb, slot, item);
592 : nbytes = btrfs_file_extent_ram_bytes(eb, item);
593 0 : extent_end = ALIGN(start + size, root->sectorsize);
594 : } else {
595 : ret = 0;
596 : goto out;
597 : }
598 :
599 0 : inode = read_one_inode(root, key->objectid);
600 0 : if (!inode) {
601 : ret = -EIO;
602 : goto out;
603 : }
604 :
605 : /*
606 : * first check to see if we already have this extent in the
607 : * file. This must be done before the btrfs_drop_extents run
608 : * so we don't try to drop this extent.
609 : */
610 0 : ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
611 : start, 0);
612 :
613 0 : if (ret == 0 &&
614 : (found_type == BTRFS_FILE_EXTENT_REG ||
615 : found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
616 : struct btrfs_file_extent_item cmp1;
617 : struct btrfs_file_extent_item cmp2;
618 : struct btrfs_file_extent_item *existing;
619 : struct extent_buffer *leaf;
620 :
621 0 : leaf = path->nodes[0];
622 0 : existing = btrfs_item_ptr(leaf, path->slots[0],
623 : struct btrfs_file_extent_item);
624 :
625 0 : read_extent_buffer(eb, &cmp1, (unsigned long)item,
626 : sizeof(cmp1));
627 0 : read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
628 : sizeof(cmp2));
629 :
630 : /*
631 : * we already have a pointer to this exact extent,
632 : * we don't have to do anything
633 : */
634 0 : if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
635 0 : btrfs_release_path(path);
636 0 : goto out;
637 : }
638 : }
639 0 : btrfs_release_path(path);
640 :
641 : /* drop any overlapping extents */
642 0 : ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
643 0 : if (ret)
644 : goto out;
645 :
646 0 : if (found_type == BTRFS_FILE_EXTENT_REG ||
647 : found_type == BTRFS_FILE_EXTENT_PREALLOC) {
648 : u64 offset;
649 : unsigned long dest_offset;
650 : struct btrfs_key ins;
651 :
652 : ret = btrfs_insert_empty_item(trans, root, path, key,
653 : sizeof(*item));
654 0 : if (ret)
655 : goto out;
656 0 : dest_offset = btrfs_item_ptr_offset(path->nodes[0],
657 : path->slots[0]);
658 0 : copy_extent_buffer(path->nodes[0], eb, dest_offset,
659 : (unsigned long)item, sizeof(*item));
660 :
661 0 : ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
662 0 : ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
663 0 : ins.type = BTRFS_EXTENT_ITEM_KEY;
664 0 : offset = key->offset - btrfs_file_extent_offset(eb, item);
665 :
666 0 : if (ins.objectid > 0) {
667 : u64 csum_start;
668 : u64 csum_end;
669 0 : LIST_HEAD(ordered_sums);
670 : /*
671 : * is this extent already allocated in the extent
672 : * allocation tree? If so, just add a reference
673 : */
674 0 : ret = btrfs_lookup_extent(root, ins.objectid,
675 : ins.offset);
676 0 : if (ret == 0) {
677 0 : ret = btrfs_inc_extent_ref(trans, root,
678 : ins.objectid, ins.offset,
679 : 0, root->root_key.objectid,
680 : key->objectid, offset, 0);
681 0 : if (ret)
682 : goto out;
683 : } else {
684 : /*
685 : * insert the extent pointer in the extent
686 : * allocation tree
687 : */
688 0 : ret = btrfs_alloc_logged_file_extent(trans,
689 : root, root->root_key.objectid,
690 : key->objectid, offset, &ins);
691 0 : if (ret)
692 : goto out;
693 : }
694 0 : btrfs_release_path(path);
695 :
696 0 : if (btrfs_file_extent_compression(eb, item)) {
697 0 : csum_start = ins.objectid;
698 0 : csum_end = csum_start + ins.offset;
699 : } else {
700 0 : csum_start = ins.objectid +
701 : btrfs_file_extent_offset(eb, item);
702 0 : csum_end = csum_start +
703 : btrfs_file_extent_num_bytes(eb, item);
704 : }
705 :
706 0 : ret = btrfs_lookup_csums_range(root->log_root,
707 : csum_start, csum_end - 1,
708 : &ordered_sums, 0);
709 0 : if (ret)
710 : goto out;
711 0 : while (!list_empty(&ordered_sums)) {
712 : struct btrfs_ordered_sum *sums;
713 0 : sums = list_entry(ordered_sums.next,
714 : struct btrfs_ordered_sum,
715 : list);
716 0 : if (!ret)
717 0 : ret = btrfs_csum_file_blocks(trans,
718 0 : root->fs_info->csum_root,
719 : sums);
720 0 : list_del(&sums->list);
721 0 : kfree(sums);
722 : }
723 0 : if (ret)
724 : goto out;
725 : } else {
726 0 : btrfs_release_path(path);
727 : }
728 0 : } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
729 : /* inline extents are easy, we just overwrite them */
730 0 : ret = overwrite_item(trans, root, path, eb, slot, key);
731 0 : if (ret)
732 : goto out;
733 : }
734 :
735 0 : inode_add_bytes(inode, nbytes);
736 0 : ret = btrfs_update_inode(trans, root, inode);
737 : out:
738 0 : if (inode)
739 0 : iput(inode);
740 0 : return ret;
741 : }
742 :
743 : /*
744 : * when cleaning up conflicts between the directory names in the
745 : * subvolume, directory names in the log and directory names in the
746 : * inode back references, we may have to unlink inodes from directories.
747 : *
748 : * This is a helper function to do the unlink of a specific directory
749 : * item
750 : */
751 0 : static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
752 : struct btrfs_root *root,
753 : struct btrfs_path *path,
754 : struct inode *dir,
755 : struct btrfs_dir_item *di)
756 : {
757 : struct inode *inode;
758 : char *name;
759 : int name_len;
760 : struct extent_buffer *leaf;
761 : struct btrfs_key location;
762 : int ret;
763 :
764 0 : leaf = path->nodes[0];
765 :
766 0 : btrfs_dir_item_key_to_cpu(leaf, di, &location);
767 0 : name_len = btrfs_dir_name_len(leaf, di);
768 0 : name = kmalloc(name_len, GFP_NOFS);
769 0 : if (!name)
770 : return -ENOMEM;
771 :
772 0 : read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
773 0 : btrfs_release_path(path);
774 :
775 0 : inode = read_one_inode(root, location.objectid);
776 0 : if (!inode) {
777 : ret = -EIO;
778 : goto out;
779 : }
780 :
781 0 : ret = link_to_fixup_dir(trans, root, path, location.objectid);
782 0 : if (ret)
783 : goto out;
784 :
785 0 : ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
786 0 : if (ret)
787 : goto out;
788 : else
789 0 : ret = btrfs_run_delayed_items(trans, root);
790 : out:
791 0 : kfree(name);
792 0 : iput(inode);
793 0 : return ret;
794 : }
795 :
796 : /*
797 : * helper function to see if a given name and sequence number found
798 : * in an inode back reference are already in a directory and correctly
799 : * point to this inode
800 : */
801 0 : static noinline int inode_in_dir(struct btrfs_root *root,
802 : struct btrfs_path *path,
803 : u64 dirid, u64 objectid, u64 index,
804 : const char *name, int name_len)
805 : {
806 : struct btrfs_dir_item *di;
807 : struct btrfs_key location;
808 : int match = 0;
809 :
810 0 : di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
811 : index, name, name_len, 0);
812 0 : if (di && !IS_ERR(di)) {
813 0 : btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
814 0 : if (location.objectid != objectid)
815 : goto out;
816 : } else
817 : goto out;
818 0 : btrfs_release_path(path);
819 :
820 0 : di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
821 0 : if (di && !IS_ERR(di)) {
822 0 : btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
823 0 : if (location.objectid != objectid)
824 : goto out;
825 : } else
826 : goto out;
827 : match = 1;
828 : out:
829 0 : btrfs_release_path(path);
830 0 : return match;
831 : }
832 :
833 : /*
834 : * helper function to check a log tree for a named back reference in
835 : * an inode. This is used to decide if a back reference that is
836 : * found in the subvolume conflicts with what we find in the log.
837 : *
838 : * inode backreferences may have multiple refs in a single item,
839 : * during replay we process one reference at a time, and we don't
840 : * want to delete valid links to a file from the subvolume if that
841 : * link is also in the log.
842 : */
843 0 : static noinline int backref_in_log(struct btrfs_root *log,
844 : struct btrfs_key *key,
845 : u64 ref_objectid,
846 : char *name, int namelen)
847 : {
848 : struct btrfs_path *path;
849 : struct btrfs_inode_ref *ref;
850 : unsigned long ptr;
851 : unsigned long ptr_end;
852 : unsigned long name_ptr;
853 : int found_name_len;
854 : int item_size;
855 : int ret;
856 : int match = 0;
857 :
858 0 : path = btrfs_alloc_path();
859 0 : if (!path)
860 : return -ENOMEM;
861 :
862 0 : ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
863 0 : if (ret != 0)
864 : goto out;
865 :
866 0 : ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
867 :
868 0 : if (key->type == BTRFS_INODE_EXTREF_KEY) {
869 0 : if (btrfs_find_name_in_ext_backref(path, ref_objectid,
870 : name, namelen, NULL))
871 : match = 1;
872 :
873 : goto out;
874 : }
875 :
876 0 : item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
877 0 : ptr_end = ptr + item_size;
878 0 : while (ptr < ptr_end) {
879 0 : ref = (struct btrfs_inode_ref *)ptr;
880 0 : found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
881 0 : if (found_name_len == namelen) {
882 0 : name_ptr = (unsigned long)(ref + 1);
883 0 : ret = memcmp_extent_buffer(path->nodes[0], name,
884 : name_ptr, namelen);
885 0 : if (ret == 0) {
886 : match = 1;
887 : goto out;
888 : }
889 : }
890 0 : ptr = (unsigned long)(ref + 1) + found_name_len;
891 : }
892 : out:
893 0 : btrfs_free_path(path);
894 0 : return match;
895 : }
896 :
897 0 : static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
898 : struct btrfs_root *root,
899 : struct btrfs_path *path,
900 : struct btrfs_root *log_root,
901 : struct inode *dir, struct inode *inode,
902 : struct extent_buffer *eb,
903 : u64 inode_objectid, u64 parent_objectid,
904 : u64 ref_index, char *name, int namelen,
905 : int *search_done)
906 : {
907 : int ret;
908 : char *victim_name;
909 : int victim_name_len;
910 : struct extent_buffer *leaf;
911 : struct btrfs_dir_item *di;
912 : struct btrfs_key search_key;
913 : struct btrfs_inode_extref *extref;
914 :
915 : again:
916 : /* Search old style refs */
917 0 : search_key.objectid = inode_objectid;
918 0 : search_key.type = BTRFS_INODE_REF_KEY;
919 0 : search_key.offset = parent_objectid;
920 0 : ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
921 0 : if (ret == 0) {
922 : struct btrfs_inode_ref *victim_ref;
923 : unsigned long ptr;
924 : unsigned long ptr_end;
925 :
926 0 : leaf = path->nodes[0];
927 :
928 : /* are we trying to overwrite a back ref for the root directory
929 : * if so, just jump out, we're done
930 : */
931 0 : if (search_key.objectid == search_key.offset)
932 : return 1;
933 :
934 : /* check all the names in this back reference to see
935 : * if they are in the log. if so, we allow them to stay
936 : * otherwise they must be unlinked as a conflict
937 : */
938 0 : ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
939 0 : ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
940 0 : while (ptr < ptr_end) {
941 0 : victim_ref = (struct btrfs_inode_ref *)ptr;
942 0 : victim_name_len = btrfs_inode_ref_name_len(leaf,
943 : victim_ref);
944 0 : victim_name = kmalloc(victim_name_len, GFP_NOFS);
945 0 : if (!victim_name)
946 : return -ENOMEM;
947 :
948 0 : read_extent_buffer(leaf, victim_name,
949 0 : (unsigned long)(victim_ref + 1),
950 : victim_name_len);
951 :
952 0 : if (!backref_in_log(log_root, &search_key,
953 : parent_objectid,
954 : victim_name,
955 : victim_name_len)) {
956 0 : inc_nlink(inode);
957 0 : btrfs_release_path(path);
958 :
959 0 : ret = btrfs_unlink_inode(trans, root, dir,
960 : inode, victim_name,
961 : victim_name_len);
962 0 : kfree(victim_name);
963 0 : if (ret)
964 : return ret;
965 0 : ret = btrfs_run_delayed_items(trans, root);
966 0 : if (ret)
967 : return ret;
968 0 : *search_done = 1;
969 : goto again;
970 : }
971 0 : kfree(victim_name);
972 :
973 0 : ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
974 : }
975 :
976 : /*
977 : * NOTE: we have searched root tree and checked the
978 : * coresponding ref, it does not need to check again.
979 : */
980 0 : *search_done = 1;
981 : }
982 0 : btrfs_release_path(path);
983 :
984 : /* Same search but for extended refs */
985 0 : extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
986 : inode_objectid, parent_objectid, 0,
987 : 0);
988 0 : if (!IS_ERR_OR_NULL(extref)) {
989 : u32 item_size;
990 : u32 cur_offset = 0;
991 : unsigned long base;
992 : struct inode *victim_parent;
993 :
994 0 : leaf = path->nodes[0];
995 :
996 0 : item_size = btrfs_item_size_nr(leaf, path->slots[0]);
997 0 : base = btrfs_item_ptr_offset(leaf, path->slots[0]);
998 :
999 0 : while (cur_offset < item_size) {
1000 0 : extref = (struct btrfs_inode_extref *)base + cur_offset;
1001 :
1002 0 : victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1003 :
1004 0 : if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1005 : goto next;
1006 :
1007 0 : victim_name = kmalloc(victim_name_len, GFP_NOFS);
1008 0 : if (!victim_name)
1009 : return -ENOMEM;
1010 0 : read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1011 : victim_name_len);
1012 :
1013 0 : search_key.objectid = inode_objectid;
1014 0 : search_key.type = BTRFS_INODE_EXTREF_KEY;
1015 0 : search_key.offset = btrfs_extref_hash(parent_objectid,
1016 : victim_name,
1017 : victim_name_len);
1018 : ret = 0;
1019 0 : if (!backref_in_log(log_root, &search_key,
1020 : parent_objectid, victim_name,
1021 : victim_name_len)) {
1022 : ret = -ENOENT;
1023 0 : victim_parent = read_one_inode(root,
1024 : parent_objectid);
1025 0 : if (victim_parent) {
1026 0 : inc_nlink(inode);
1027 0 : btrfs_release_path(path);
1028 :
1029 0 : ret = btrfs_unlink_inode(trans, root,
1030 : victim_parent,
1031 : inode,
1032 : victim_name,
1033 : victim_name_len);
1034 0 : if (!ret)
1035 0 : ret = btrfs_run_delayed_items(
1036 : trans, root);
1037 : }
1038 0 : iput(victim_parent);
1039 0 : kfree(victim_name);
1040 0 : if (ret)
1041 : return ret;
1042 0 : *search_done = 1;
1043 : goto again;
1044 : }
1045 0 : kfree(victim_name);
1046 : if (ret)
1047 : return ret;
1048 : next:
1049 0 : cur_offset += victim_name_len + sizeof(*extref);
1050 : }
1051 0 : *search_done = 1;
1052 : }
1053 0 : btrfs_release_path(path);
1054 :
1055 : /* look for a conflicting sequence number */
1056 0 : di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1057 : ref_index, name, namelen, 0);
1058 0 : if (di && !IS_ERR(di)) {
1059 0 : ret = drop_one_dir_item(trans, root, path, dir, di);
1060 0 : if (ret)
1061 : return ret;
1062 : }
1063 0 : btrfs_release_path(path);
1064 :
1065 : /* look for a conflicing name */
1066 0 : di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1067 : name, namelen, 0);
1068 0 : if (di && !IS_ERR(di)) {
1069 0 : ret = drop_one_dir_item(trans, root, path, dir, di);
1070 0 : if (ret)
1071 : return ret;
1072 : }
1073 0 : btrfs_release_path(path);
1074 :
1075 : return 0;
1076 : }
1077 :
1078 0 : static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1079 : u32 *namelen, char **name, u64 *index,
1080 : u64 *parent_objectid)
1081 : {
1082 : struct btrfs_inode_extref *extref;
1083 :
1084 0 : extref = (struct btrfs_inode_extref *)ref_ptr;
1085 :
1086 0 : *namelen = btrfs_inode_extref_name_len(eb, extref);
1087 0 : *name = kmalloc(*namelen, GFP_NOFS);
1088 0 : if (*name == NULL)
1089 : return -ENOMEM;
1090 :
1091 0 : read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1092 0 : *namelen);
1093 :
1094 0 : *index = btrfs_inode_extref_index(eb, extref);
1095 0 : if (parent_objectid)
1096 0 : *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1097 :
1098 : return 0;
1099 : }
1100 :
1101 0 : static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1102 : u32 *namelen, char **name, u64 *index)
1103 : {
1104 : struct btrfs_inode_ref *ref;
1105 :
1106 0 : ref = (struct btrfs_inode_ref *)ref_ptr;
1107 :
1108 0 : *namelen = btrfs_inode_ref_name_len(eb, ref);
1109 0 : *name = kmalloc(*namelen, GFP_NOFS);
1110 0 : if (*name == NULL)
1111 : return -ENOMEM;
1112 :
1113 0 : read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1114 :
1115 0 : *index = btrfs_inode_ref_index(eb, ref);
1116 :
1117 0 : return 0;
1118 : }
1119 :
1120 : /*
1121 : * replay one inode back reference item found in the log tree.
1122 : * eb, slot and key refer to the buffer and key found in the log tree.
1123 : * root is the destination we are replaying into, and path is for temp
1124 : * use by this function. (it should be released on return).
1125 : */
1126 0 : static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1127 : struct btrfs_root *root,
1128 : struct btrfs_root *log,
1129 : struct btrfs_path *path,
1130 : struct extent_buffer *eb, int slot,
1131 : struct btrfs_key *key)
1132 : {
1133 : struct inode *dir = NULL;
1134 : struct inode *inode = NULL;
1135 : unsigned long ref_ptr;
1136 : unsigned long ref_end;
1137 0 : char *name = NULL;
1138 : int namelen;
1139 : int ret;
1140 0 : int search_done = 0;
1141 : int log_ref_ver = 0;
1142 : u64 parent_objectid;
1143 : u64 inode_objectid;
1144 0 : u64 ref_index = 0;
1145 : int ref_struct_size;
1146 :
1147 0 : ref_ptr = btrfs_item_ptr_offset(eb, slot);
1148 0 : ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1149 :
1150 0 : if (key->type == BTRFS_INODE_EXTREF_KEY) {
1151 : struct btrfs_inode_extref *r;
1152 :
1153 : ref_struct_size = sizeof(struct btrfs_inode_extref);
1154 : log_ref_ver = 1;
1155 0 : r = (struct btrfs_inode_extref *)ref_ptr;
1156 0 : parent_objectid = btrfs_inode_extref_parent(eb, r);
1157 : } else {
1158 : ref_struct_size = sizeof(struct btrfs_inode_ref);
1159 0 : parent_objectid = key->offset;
1160 : }
1161 0 : inode_objectid = key->objectid;
1162 :
1163 : /*
1164 : * it is possible that we didn't log all the parent directories
1165 : * for a given inode. If we don't find the dir, just don't
1166 : * copy the back ref in. The link count fixup code will take
1167 : * care of the rest
1168 : */
1169 0 : dir = read_one_inode(root, parent_objectid);
1170 0 : if (!dir) {
1171 : ret = -ENOENT;
1172 : goto out;
1173 : }
1174 :
1175 0 : inode = read_one_inode(root, inode_objectid);
1176 0 : if (!inode) {
1177 : ret = -EIO;
1178 : goto out;
1179 : }
1180 :
1181 0 : while (ref_ptr < ref_end) {
1182 0 : if (log_ref_ver) {
1183 0 : ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1184 : &ref_index, &parent_objectid);
1185 : /*
1186 : * parent object can change from one array
1187 : * item to another.
1188 : */
1189 0 : if (!dir)
1190 0 : dir = read_one_inode(root, parent_objectid);
1191 0 : if (!dir) {
1192 : ret = -ENOENT;
1193 : goto out;
1194 : }
1195 : } else {
1196 0 : ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1197 : &ref_index);
1198 : }
1199 0 : if (ret)
1200 : goto out;
1201 :
1202 : /* if we already have a perfect match, we're done */
1203 0 : if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
1204 : ref_index, name, namelen)) {
1205 : /*
1206 : * look for a conflicting back reference in the
1207 : * metadata. if we find one we have to unlink that name
1208 : * of the file before we add our new link. Later on, we
1209 : * overwrite any existing back reference, and we don't
1210 : * want to create dangling pointers in the directory.
1211 : */
1212 :
1213 0 : if (!search_done) {
1214 0 : ret = __add_inode_ref(trans, root, path, log,
1215 : dir, inode, eb,
1216 : inode_objectid,
1217 : parent_objectid,
1218 : ref_index, name, namelen,
1219 : &search_done);
1220 0 : if (ret) {
1221 0 : if (ret == 1)
1222 : ret = 0;
1223 : goto out;
1224 : }
1225 : }
1226 :
1227 : /* insert our name */
1228 0 : ret = btrfs_add_link(trans, dir, inode, name, namelen,
1229 : 0, ref_index);
1230 0 : if (ret)
1231 : goto out;
1232 :
1233 0 : btrfs_update_inode(trans, root, inode);
1234 : }
1235 :
1236 0 : ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1237 0 : kfree(name);
1238 0 : name = NULL;
1239 0 : if (log_ref_ver) {
1240 0 : iput(dir);
1241 : dir = NULL;
1242 : }
1243 : }
1244 :
1245 : /* finally write the back reference in the inode */
1246 0 : ret = overwrite_item(trans, root, path, eb, slot, key);
1247 : out:
1248 0 : btrfs_release_path(path);
1249 0 : kfree(name);
1250 0 : iput(dir);
1251 0 : iput(inode);
1252 0 : return ret;
1253 : }
1254 :
1255 0 : static int insert_orphan_item(struct btrfs_trans_handle *trans,
1256 : struct btrfs_root *root, u64 offset)
1257 : {
1258 : int ret;
1259 0 : ret = btrfs_find_item(root, NULL, BTRFS_ORPHAN_OBJECTID,
1260 : offset, BTRFS_ORPHAN_ITEM_KEY, NULL);
1261 0 : if (ret > 0)
1262 0 : ret = btrfs_insert_orphan_item(trans, root, offset);
1263 0 : return ret;
1264 : }
1265 :
1266 0 : static int count_inode_extrefs(struct btrfs_root *root,
1267 : struct inode *inode, struct btrfs_path *path)
1268 : {
1269 : int ret = 0;
1270 : int name_len;
1271 : unsigned int nlink = 0;
1272 : u32 item_size;
1273 : u32 cur_offset = 0;
1274 : u64 inode_objectid = btrfs_ino(inode);
1275 0 : u64 offset = 0;
1276 : unsigned long ptr;
1277 : struct btrfs_inode_extref *extref;
1278 : struct extent_buffer *leaf;
1279 :
1280 : while (1) {
1281 0 : ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1282 : &extref, &offset);
1283 0 : if (ret)
1284 : break;
1285 :
1286 0 : leaf = path->nodes[0];
1287 0 : item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1288 0 : ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1289 :
1290 0 : while (cur_offset < item_size) {
1291 0 : extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1292 : name_len = btrfs_inode_extref_name_len(leaf, extref);
1293 :
1294 0 : nlink++;
1295 :
1296 0 : cur_offset += name_len + sizeof(*extref);
1297 : }
1298 :
1299 0 : offset++;
1300 0 : btrfs_release_path(path);
1301 0 : }
1302 0 : btrfs_release_path(path);
1303 :
1304 0 : if (ret < 0)
1305 : return ret;
1306 0 : return nlink;
1307 : }
1308 :
1309 0 : static int count_inode_refs(struct btrfs_root *root,
1310 : struct inode *inode, struct btrfs_path *path)
1311 : {
1312 : int ret;
1313 : struct btrfs_key key;
1314 : unsigned int nlink = 0;
1315 : unsigned long ptr;
1316 : unsigned long ptr_end;
1317 : int name_len;
1318 : u64 ino = btrfs_ino(inode);
1319 :
1320 0 : key.objectid = ino;
1321 0 : key.type = BTRFS_INODE_REF_KEY;
1322 0 : key.offset = (u64)-1;
1323 :
1324 : while (1) {
1325 0 : ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1326 0 : if (ret < 0)
1327 : break;
1328 0 : if (ret > 0) {
1329 0 : if (path->slots[0] == 0)
1330 : break;
1331 0 : path->slots[0]--;
1332 : }
1333 : process_slot:
1334 0 : btrfs_item_key_to_cpu(path->nodes[0], &key,
1335 : path->slots[0]);
1336 0 : if (key.objectid != ino ||
1337 0 : key.type != BTRFS_INODE_REF_KEY)
1338 : break;
1339 0 : ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1340 0 : ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1341 : path->slots[0]);
1342 0 : while (ptr < ptr_end) {
1343 : struct btrfs_inode_ref *ref;
1344 :
1345 0 : ref = (struct btrfs_inode_ref *)ptr;
1346 0 : name_len = btrfs_inode_ref_name_len(path->nodes[0],
1347 : ref);
1348 0 : ptr = (unsigned long)(ref + 1) + name_len;
1349 0 : nlink++;
1350 : }
1351 :
1352 0 : if (key.offset == 0)
1353 : break;
1354 0 : if (path->slots[0] > 0) {
1355 0 : path->slots[0]--;
1356 0 : goto process_slot;
1357 : }
1358 0 : key.offset--;
1359 0 : btrfs_release_path(path);
1360 0 : }
1361 0 : btrfs_release_path(path);
1362 :
1363 0 : return nlink;
1364 : }
1365 :
1366 : /*
1367 : * There are a few corners where the link count of the file can't
1368 : * be properly maintained during replay. So, instead of adding
1369 : * lots of complexity to the log code, we just scan the backrefs
1370 : * for any file that has been through replay.
1371 : *
1372 : * The scan will update the link count on the inode to reflect the
1373 : * number of back refs found. If it goes down to zero, the iput
1374 : * will free the inode.
1375 : */
1376 0 : static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1377 : struct btrfs_root *root,
1378 : struct inode *inode)
1379 : {
1380 : struct btrfs_path *path;
1381 : int ret;
1382 : u64 nlink = 0;
1383 : u64 ino = btrfs_ino(inode);
1384 :
1385 0 : path = btrfs_alloc_path();
1386 0 : if (!path)
1387 : return -ENOMEM;
1388 :
1389 0 : ret = count_inode_refs(root, inode, path);
1390 0 : if (ret < 0)
1391 : goto out;
1392 :
1393 0 : nlink = ret;
1394 :
1395 0 : ret = count_inode_extrefs(root, inode, path);
1396 0 : if (ret == -ENOENT)
1397 : ret = 0;
1398 :
1399 0 : if (ret < 0)
1400 : goto out;
1401 :
1402 0 : nlink += ret;
1403 :
1404 : ret = 0;
1405 :
1406 0 : if (nlink != inode->i_nlink) {
1407 0 : set_nlink(inode, nlink);
1408 0 : btrfs_update_inode(trans, root, inode);
1409 : }
1410 0 : BTRFS_I(inode)->index_cnt = (u64)-1;
1411 :
1412 0 : if (inode->i_nlink == 0) {
1413 0 : if (S_ISDIR(inode->i_mode)) {
1414 0 : ret = replay_dir_deletes(trans, root, NULL, path,
1415 : ino, 1);
1416 0 : if (ret)
1417 : goto out;
1418 : }
1419 0 : ret = insert_orphan_item(trans, root, ino);
1420 : }
1421 :
1422 : out:
1423 0 : btrfs_free_path(path);
1424 0 : return ret;
1425 : }
1426 :
1427 0 : static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1428 : struct btrfs_root *root,
1429 : struct btrfs_path *path)
1430 : {
1431 : int ret;
1432 : struct btrfs_key key;
1433 : struct inode *inode;
1434 :
1435 0 : key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1436 0 : key.type = BTRFS_ORPHAN_ITEM_KEY;
1437 0 : key.offset = (u64)-1;
1438 : while (1) {
1439 0 : ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1440 0 : if (ret < 0)
1441 : break;
1442 :
1443 0 : if (ret == 1) {
1444 0 : if (path->slots[0] == 0)
1445 : break;
1446 0 : path->slots[0]--;
1447 : }
1448 :
1449 0 : btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1450 0 : if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1451 0 : key.type != BTRFS_ORPHAN_ITEM_KEY)
1452 : break;
1453 :
1454 : ret = btrfs_del_item(trans, root, path);
1455 0 : if (ret)
1456 : goto out;
1457 :
1458 0 : btrfs_release_path(path);
1459 0 : inode = read_one_inode(root, key.offset);
1460 0 : if (!inode)
1461 : return -EIO;
1462 :
1463 0 : ret = fixup_inode_link_count(trans, root, inode);
1464 0 : iput(inode);
1465 0 : if (ret)
1466 : goto out;
1467 :
1468 : /*
1469 : * fixup on a directory may create new entries,
1470 : * make sure we always look for the highset possible
1471 : * offset
1472 : */
1473 0 : key.offset = (u64)-1;
1474 0 : }
1475 : ret = 0;
1476 : out:
1477 0 : btrfs_release_path(path);
1478 0 : return ret;
1479 : }
1480 :
1481 :
1482 : /*
1483 : * record a given inode in the fixup dir so we can check its link
1484 : * count when replay is done. The link count is incremented here
1485 : * so the inode won't go away until we check it
1486 : */
1487 0 : static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1488 : struct btrfs_root *root,
1489 : struct btrfs_path *path,
1490 : u64 objectid)
1491 : {
1492 : struct btrfs_key key;
1493 : int ret = 0;
1494 : struct inode *inode;
1495 :
1496 0 : inode = read_one_inode(root, objectid);
1497 0 : if (!inode)
1498 : return -EIO;
1499 :
1500 0 : key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1501 : btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1502 0 : key.offset = objectid;
1503 :
1504 : ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1505 :
1506 0 : btrfs_release_path(path);
1507 0 : if (ret == 0) {
1508 0 : if (!inode->i_nlink)
1509 0 : set_nlink(inode, 1);
1510 : else
1511 0 : inc_nlink(inode);
1512 0 : ret = btrfs_update_inode(trans, root, inode);
1513 0 : } else if (ret == -EEXIST) {
1514 : ret = 0;
1515 : } else {
1516 0 : BUG(); /* Logic Error */
1517 : }
1518 0 : iput(inode);
1519 :
1520 0 : return ret;
1521 : }
1522 :
1523 : /*
1524 : * when replaying the log for a directory, we only insert names
1525 : * for inodes that actually exist. This means an fsync on a directory
1526 : * does not implicitly fsync all the new files in it
1527 : */
1528 0 : static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1529 : struct btrfs_root *root,
1530 : struct btrfs_path *path,
1531 : u64 dirid, u64 index,
1532 : char *name, int name_len, u8 type,
1533 : struct btrfs_key *location)
1534 : {
1535 : struct inode *inode;
1536 : struct inode *dir;
1537 : int ret;
1538 :
1539 0 : inode = read_one_inode(root, location->objectid);
1540 0 : if (!inode)
1541 : return -ENOENT;
1542 :
1543 0 : dir = read_one_inode(root, dirid);
1544 0 : if (!dir) {
1545 0 : iput(inode);
1546 : return -EIO;
1547 : }
1548 :
1549 0 : ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1550 :
1551 : /* FIXME, put inode into FIXUP list */
1552 :
1553 0 : iput(inode);
1554 0 : iput(dir);
1555 : return ret;
1556 : }
1557 :
1558 : /*
1559 : * take a single entry in a log directory item and replay it into
1560 : * the subvolume.
1561 : *
1562 : * if a conflicting item exists in the subdirectory already,
1563 : * the inode it points to is unlinked and put into the link count
1564 : * fix up tree.
1565 : *
1566 : * If a name from the log points to a file or directory that does
1567 : * not exist in the FS, it is skipped. fsyncs on directories
1568 : * do not force down inodes inside that directory, just changes to the
1569 : * names or unlinks in a directory.
1570 : */
1571 0 : static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1572 : struct btrfs_root *root,
1573 : struct btrfs_path *path,
1574 : struct extent_buffer *eb,
1575 : struct btrfs_dir_item *di,
1576 : struct btrfs_key *key)
1577 : {
1578 : char *name;
1579 : int name_len;
1580 : struct btrfs_dir_item *dst_di;
1581 : struct btrfs_key found_key;
1582 : struct btrfs_key log_key;
1583 : struct inode *dir;
1584 : u8 log_type;
1585 : int exists;
1586 : int ret = 0;
1587 0 : bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1588 :
1589 0 : dir = read_one_inode(root, key->objectid);
1590 0 : if (!dir)
1591 : return -EIO;
1592 :
1593 0 : name_len = btrfs_dir_name_len(eb, di);
1594 0 : name = kmalloc(name_len, GFP_NOFS);
1595 0 : if (!name) {
1596 : ret = -ENOMEM;
1597 : goto out;
1598 : }
1599 :
1600 : log_type = btrfs_dir_type(eb, di);
1601 0 : read_extent_buffer(eb, name, (unsigned long)(di + 1),
1602 : name_len);
1603 :
1604 0 : btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1605 0 : exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1606 0 : if (exists == 0)
1607 : exists = 1;
1608 : else
1609 : exists = 0;
1610 0 : btrfs_release_path(path);
1611 :
1612 0 : if (key->type == BTRFS_DIR_ITEM_KEY) {
1613 0 : dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1614 : name, name_len, 1);
1615 0 : } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1616 0 : dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1617 : key->objectid,
1618 : key->offset, name,
1619 : name_len, 1);
1620 : } else {
1621 : /* Corruption */
1622 : ret = -EINVAL;
1623 : goto out;
1624 : }
1625 0 : if (IS_ERR_OR_NULL(dst_di)) {
1626 : /* we need a sequence number to insert, so we only
1627 : * do inserts for the BTRFS_DIR_INDEX_KEY types
1628 : */
1629 0 : if (key->type != BTRFS_DIR_INDEX_KEY)
1630 : goto out;
1631 : goto insert;
1632 : }
1633 :
1634 0 : btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1635 : /* the existing item matches the logged item */
1636 0 : if (found_key.objectid == log_key.objectid &&
1637 0 : found_key.type == log_key.type &&
1638 0 : found_key.offset == log_key.offset &&
1639 0 : btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1640 : goto out;
1641 : }
1642 :
1643 : /*
1644 : * don't drop the conflicting directory entry if the inode
1645 : * for the new entry doesn't exist
1646 : */
1647 0 : if (!exists)
1648 : goto out;
1649 :
1650 0 : ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1651 0 : if (ret)
1652 : goto out;
1653 :
1654 0 : if (key->type == BTRFS_DIR_INDEX_KEY)
1655 : goto insert;
1656 : out:
1657 0 : btrfs_release_path(path);
1658 0 : if (!ret && update_size) {
1659 0 : btrfs_i_size_write(dir, dir->i_size + name_len * 2);
1660 0 : ret = btrfs_update_inode(trans, root, dir);
1661 : }
1662 0 : kfree(name);
1663 0 : iput(dir);
1664 0 : return ret;
1665 :
1666 : insert:
1667 0 : btrfs_release_path(path);
1668 0 : ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1669 : name, name_len, log_type, &log_key);
1670 0 : if (ret && ret != -ENOENT)
1671 : goto out;
1672 : update_size = false;
1673 : ret = 0;
1674 0 : goto out;
1675 : }
1676 :
1677 : /*
1678 : * find all the names in a directory item and reconcile them into
1679 : * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1680 : * one name in a directory item, but the same code gets used for
1681 : * both directory index types
1682 : */
1683 0 : static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1684 : struct btrfs_root *root,
1685 : struct btrfs_path *path,
1686 : struct extent_buffer *eb, int slot,
1687 : struct btrfs_key *key)
1688 : {
1689 : int ret;
1690 : u32 item_size = btrfs_item_size_nr(eb, slot);
1691 : struct btrfs_dir_item *di;
1692 : int name_len;
1693 : unsigned long ptr;
1694 : unsigned long ptr_end;
1695 :
1696 0 : ptr = btrfs_item_ptr_offset(eb, slot);
1697 0 : ptr_end = ptr + item_size;
1698 0 : while (ptr < ptr_end) {
1699 0 : di = (struct btrfs_dir_item *)ptr;
1700 0 : if (verify_dir_item(root, eb, di))
1701 : return -EIO;
1702 : name_len = btrfs_dir_name_len(eb, di);
1703 0 : ret = replay_one_name(trans, root, path, eb, di, key);
1704 0 : if (ret)
1705 : return ret;
1706 0 : ptr = (unsigned long)(di + 1);
1707 0 : ptr += name_len;
1708 : }
1709 : return 0;
1710 : }
1711 :
1712 : /*
1713 : * directory replay has two parts. There are the standard directory
1714 : * items in the log copied from the subvolume, and range items
1715 : * created in the log while the subvolume was logged.
1716 : *
1717 : * The range items tell us which parts of the key space the log
1718 : * is authoritative for. During replay, if a key in the subvolume
1719 : * directory is in a logged range item, but not actually in the log
1720 : * that means it was deleted from the directory before the fsync
1721 : * and should be removed.
1722 : */
1723 0 : static noinline int find_dir_range(struct btrfs_root *root,
1724 : struct btrfs_path *path,
1725 : u64 dirid, int key_type,
1726 : u64 *start_ret, u64 *end_ret)
1727 : {
1728 : struct btrfs_key key;
1729 : u64 found_end;
1730 : struct btrfs_dir_log_item *item;
1731 : int ret;
1732 : int nritems;
1733 :
1734 0 : if (*start_ret == (u64)-1)
1735 : return 1;
1736 :
1737 0 : key.objectid = dirid;
1738 0 : key.type = key_type;
1739 0 : key.offset = *start_ret;
1740 :
1741 0 : ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1742 0 : if (ret < 0)
1743 : goto out;
1744 0 : if (ret > 0) {
1745 0 : if (path->slots[0] == 0)
1746 : goto out;
1747 0 : path->slots[0]--;
1748 : }
1749 0 : if (ret != 0)
1750 0 : btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1751 :
1752 0 : if (key.type != key_type || key.objectid != dirid) {
1753 : ret = 1;
1754 : goto next;
1755 : }
1756 0 : item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1757 : struct btrfs_dir_log_item);
1758 0 : found_end = btrfs_dir_log_end(path->nodes[0], item);
1759 :
1760 0 : if (*start_ret >= key.offset && *start_ret <= found_end) {
1761 : ret = 0;
1762 0 : *start_ret = key.offset;
1763 0 : *end_ret = found_end;
1764 0 : goto out;
1765 : }
1766 : ret = 1;
1767 : next:
1768 : /* check the next slot in the tree to see if it is a valid item */
1769 0 : nritems = btrfs_header_nritems(path->nodes[0]);
1770 0 : if (path->slots[0] >= nritems) {
1771 0 : ret = btrfs_next_leaf(root, path);
1772 0 : if (ret)
1773 : goto out;
1774 : } else {
1775 0 : path->slots[0]++;
1776 : }
1777 :
1778 0 : btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1779 :
1780 0 : if (key.type != key_type || key.objectid != dirid) {
1781 : ret = 1;
1782 : goto out;
1783 : }
1784 0 : item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1785 : struct btrfs_dir_log_item);
1786 0 : found_end = btrfs_dir_log_end(path->nodes[0], item);
1787 0 : *start_ret = key.offset;
1788 0 : *end_ret = found_end;
1789 : ret = 0;
1790 : out:
1791 0 : btrfs_release_path(path);
1792 0 : return ret;
1793 : }
1794 :
1795 : /*
1796 : * this looks for a given directory item in the log. If the directory
1797 : * item is not in the log, the item is removed and the inode it points
1798 : * to is unlinked
1799 : */
1800 0 : static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1801 : struct btrfs_root *root,
1802 : struct btrfs_root *log,
1803 : struct btrfs_path *path,
1804 : struct btrfs_path *log_path,
1805 : struct inode *dir,
1806 : struct btrfs_key *dir_key)
1807 : {
1808 : int ret;
1809 : struct extent_buffer *eb;
1810 : int slot;
1811 : u32 item_size;
1812 : struct btrfs_dir_item *di;
1813 : struct btrfs_dir_item *log_di;
1814 : int name_len;
1815 : unsigned long ptr;
1816 : unsigned long ptr_end;
1817 : char *name;
1818 : struct inode *inode;
1819 : struct btrfs_key location;
1820 :
1821 : again:
1822 0 : eb = path->nodes[0];
1823 0 : slot = path->slots[0];
1824 : item_size = btrfs_item_size_nr(eb, slot);
1825 0 : ptr = btrfs_item_ptr_offset(eb, slot);
1826 0 : ptr_end = ptr + item_size;
1827 0 : while (ptr < ptr_end) {
1828 0 : di = (struct btrfs_dir_item *)ptr;
1829 0 : if (verify_dir_item(root, eb, di)) {
1830 : ret = -EIO;
1831 : goto out;
1832 : }
1833 :
1834 0 : name_len = btrfs_dir_name_len(eb, di);
1835 0 : name = kmalloc(name_len, GFP_NOFS);
1836 0 : if (!name) {
1837 : ret = -ENOMEM;
1838 : goto out;
1839 : }
1840 0 : read_extent_buffer(eb, name, (unsigned long)(di + 1),
1841 : name_len);
1842 : log_di = NULL;
1843 0 : if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1844 0 : log_di = btrfs_lookup_dir_item(trans, log, log_path,
1845 : dir_key->objectid,
1846 : name, name_len, 0);
1847 0 : } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1848 0 : log_di = btrfs_lookup_dir_index_item(trans, log,
1849 : log_path,
1850 : dir_key->objectid,
1851 : dir_key->offset,
1852 : name, name_len, 0);
1853 : }
1854 0 : if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
1855 0 : btrfs_dir_item_key_to_cpu(eb, di, &location);
1856 0 : btrfs_release_path(path);
1857 0 : btrfs_release_path(log_path);
1858 0 : inode = read_one_inode(root, location.objectid);
1859 0 : if (!inode) {
1860 0 : kfree(name);
1861 0 : return -EIO;
1862 : }
1863 :
1864 0 : ret = link_to_fixup_dir(trans, root,
1865 : path, location.objectid);
1866 0 : if (ret) {
1867 0 : kfree(name);
1868 0 : iput(inode);
1869 0 : goto out;
1870 : }
1871 :
1872 0 : inc_nlink(inode);
1873 0 : ret = btrfs_unlink_inode(trans, root, dir, inode,
1874 : name, name_len);
1875 0 : if (!ret)
1876 0 : ret = btrfs_run_delayed_items(trans, root);
1877 0 : kfree(name);
1878 0 : iput(inode);
1879 0 : if (ret)
1880 : goto out;
1881 :
1882 : /* there might still be more names under this key
1883 : * check and repeat if required
1884 : */
1885 0 : ret = btrfs_search_slot(NULL, root, dir_key, path,
1886 : 0, 0);
1887 0 : if (ret == 0)
1888 : goto again;
1889 : ret = 0;
1890 : goto out;
1891 0 : } else if (IS_ERR(log_di)) {
1892 0 : kfree(name);
1893 0 : return PTR_ERR(log_di);
1894 : }
1895 0 : btrfs_release_path(log_path);
1896 0 : kfree(name);
1897 :
1898 : ptr = (unsigned long)(di + 1);
1899 0 : ptr += name_len;
1900 : }
1901 : ret = 0;
1902 : out:
1903 0 : btrfs_release_path(path);
1904 0 : btrfs_release_path(log_path);
1905 0 : return ret;
1906 : }
1907 :
1908 : /*
1909 : * deletion replay happens before we copy any new directory items
1910 : * out of the log or out of backreferences from inodes. It
1911 : * scans the log to find ranges of keys that log is authoritative for,
1912 : * and then scans the directory to find items in those ranges that are
1913 : * not present in the log.
1914 : *
1915 : * Anything we don't find in the log is unlinked and removed from the
1916 : * directory.
1917 : */
1918 0 : static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1919 : struct btrfs_root *root,
1920 : struct btrfs_root *log,
1921 : struct btrfs_path *path,
1922 : u64 dirid, int del_all)
1923 : {
1924 : u64 range_start;
1925 : u64 range_end;
1926 : int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1927 : int ret = 0;
1928 : struct btrfs_key dir_key;
1929 : struct btrfs_key found_key;
1930 : struct btrfs_path *log_path;
1931 : struct inode *dir;
1932 :
1933 0 : dir_key.objectid = dirid;
1934 0 : dir_key.type = BTRFS_DIR_ITEM_KEY;
1935 0 : log_path = btrfs_alloc_path();
1936 0 : if (!log_path)
1937 : return -ENOMEM;
1938 :
1939 0 : dir = read_one_inode(root, dirid);
1940 : /* it isn't an error if the inode isn't there, that can happen
1941 : * because we replay the deletes before we copy in the inode item
1942 : * from the log
1943 : */
1944 0 : if (!dir) {
1945 0 : btrfs_free_path(log_path);
1946 0 : return 0;
1947 : }
1948 : again:
1949 0 : range_start = 0;
1950 0 : range_end = 0;
1951 : while (1) {
1952 0 : if (del_all)
1953 0 : range_end = (u64)-1;
1954 : else {
1955 0 : ret = find_dir_range(log, path, dirid, key_type,
1956 : &range_start, &range_end);
1957 0 : if (ret != 0)
1958 : break;
1959 : }
1960 :
1961 0 : dir_key.offset = range_start;
1962 : while (1) {
1963 : int nritems;
1964 0 : ret = btrfs_search_slot(NULL, root, &dir_key, path,
1965 : 0, 0);
1966 0 : if (ret < 0)
1967 : goto out;
1968 :
1969 0 : nritems = btrfs_header_nritems(path->nodes[0]);
1970 0 : if (path->slots[0] >= nritems) {
1971 0 : ret = btrfs_next_leaf(root, path);
1972 0 : if (ret)
1973 : break;
1974 : }
1975 0 : btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1976 : path->slots[0]);
1977 0 : if (found_key.objectid != dirid ||
1978 0 : found_key.type != dir_key.type)
1979 : goto next_type;
1980 :
1981 0 : if (found_key.offset > range_end)
1982 : break;
1983 :
1984 0 : ret = check_item_in_log(trans, root, log, path,
1985 : log_path, dir,
1986 : &found_key);
1987 0 : if (ret)
1988 : goto out;
1989 0 : if (found_key.offset == (u64)-1)
1990 : break;
1991 0 : dir_key.offset = found_key.offset + 1;
1992 0 : }
1993 0 : btrfs_release_path(path);
1994 0 : if (range_end == (u64)-1)
1995 : break;
1996 0 : range_start = range_end + 1;
1997 0 : }
1998 :
1999 : next_type:
2000 : ret = 0;
2001 0 : if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2002 : key_type = BTRFS_DIR_LOG_INDEX_KEY;
2003 0 : dir_key.type = BTRFS_DIR_INDEX_KEY;
2004 0 : btrfs_release_path(path);
2005 0 : goto again;
2006 : }
2007 : out:
2008 0 : btrfs_release_path(path);
2009 0 : btrfs_free_path(log_path);
2010 0 : iput(dir);
2011 0 : return ret;
2012 : }
2013 :
2014 : /*
2015 : * the process_func used to replay items from the log tree. This
2016 : * gets called in two different stages. The first stage just looks
2017 : * for inodes and makes sure they are all copied into the subvolume.
2018 : *
2019 : * The second stage copies all the other item types from the log into
2020 : * the subvolume. The two stage approach is slower, but gets rid of
2021 : * lots of complexity around inodes referencing other inodes that exist
2022 : * only in the log (references come from either directory items or inode
2023 : * back refs).
2024 : */
2025 0 : static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2026 : struct walk_control *wc, u64 gen)
2027 : {
2028 : int nritems;
2029 : struct btrfs_path *path;
2030 0 : struct btrfs_root *root = wc->replay_dest;
2031 : struct btrfs_key key;
2032 : int level;
2033 : int i;
2034 : int ret;
2035 :
2036 0 : ret = btrfs_read_buffer(eb, gen);
2037 0 : if (ret)
2038 : return ret;
2039 :
2040 : level = btrfs_header_level(eb);
2041 :
2042 0 : if (level != 0)
2043 : return 0;
2044 :
2045 0 : path = btrfs_alloc_path();
2046 0 : if (!path)
2047 : return -ENOMEM;
2048 :
2049 0 : nritems = btrfs_header_nritems(eb);
2050 0 : for (i = 0; i < nritems; i++) {
2051 0 : btrfs_item_key_to_cpu(eb, &key, i);
2052 :
2053 : /* inode keys are done during the first stage */
2054 0 : if (key.type == BTRFS_INODE_ITEM_KEY &&
2055 0 : wc->stage == LOG_WALK_REPLAY_INODES) {
2056 : struct btrfs_inode_item *inode_item;
2057 : u32 mode;
2058 :
2059 0 : inode_item = btrfs_item_ptr(eb, i,
2060 : struct btrfs_inode_item);
2061 : mode = btrfs_inode_mode(eb, inode_item);
2062 0 : if (S_ISDIR(mode)) {
2063 0 : ret = replay_dir_deletes(wc->trans,
2064 : root, log, path, key.objectid, 0);
2065 0 : if (ret)
2066 : break;
2067 : }
2068 0 : ret = overwrite_item(wc->trans, root, path,
2069 : eb, i, &key);
2070 0 : if (ret)
2071 : break;
2072 :
2073 : /* for regular files, make sure corresponding
2074 : * orhpan item exist. extents past the new EOF
2075 : * will be truncated later by orphan cleanup.
2076 : */
2077 0 : if (S_ISREG(mode)) {
2078 0 : ret = insert_orphan_item(wc->trans, root,
2079 : key.objectid);
2080 0 : if (ret)
2081 : break;
2082 : }
2083 :
2084 0 : ret = link_to_fixup_dir(wc->trans, root,
2085 : path, key.objectid);
2086 0 : if (ret)
2087 : break;
2088 : }
2089 :
2090 0 : if (key.type == BTRFS_DIR_INDEX_KEY &&
2091 0 : wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2092 0 : ret = replay_one_dir_item(wc->trans, root, path,
2093 : eb, i, &key);
2094 0 : if (ret)
2095 : break;
2096 : }
2097 :
2098 0 : if (wc->stage < LOG_WALK_REPLAY_ALL)
2099 0 : continue;
2100 :
2101 : /* these keys are simply copied */
2102 0 : if (key.type == BTRFS_XATTR_ITEM_KEY) {
2103 0 : ret = overwrite_item(wc->trans, root, path,
2104 : eb, i, &key);
2105 0 : if (ret)
2106 : break;
2107 0 : } else if (key.type == BTRFS_INODE_REF_KEY ||
2108 : key.type == BTRFS_INODE_EXTREF_KEY) {
2109 0 : ret = add_inode_ref(wc->trans, root, log, path,
2110 : eb, i, &key);
2111 0 : if (ret && ret != -ENOENT)
2112 : break;
2113 : ret = 0;
2114 0 : } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2115 0 : ret = replay_one_extent(wc->trans, root, path,
2116 : eb, i, &key);
2117 0 : if (ret)
2118 : break;
2119 0 : } else if (key.type == BTRFS_DIR_ITEM_KEY) {
2120 0 : ret = replay_one_dir_item(wc->trans, root, path,
2121 : eb, i, &key);
2122 0 : if (ret)
2123 : break;
2124 : }
2125 : }
2126 0 : btrfs_free_path(path);
2127 0 : return ret;
2128 : }
2129 :
2130 448 : static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2131 57 : struct btrfs_root *root,
2132 : struct btrfs_path *path, int *level,
2133 : struct walk_control *wc)
2134 : {
2135 : u64 root_owner;
2136 : u64 bytenr;
2137 : u64 ptr_gen;
2138 0 : struct extent_buffer *next;
2139 124 : struct extent_buffer *cur;
2140 57 : struct extent_buffer *parent;
2141 : u32 blocksize;
2142 : int ret = 0;
2143 :
2144 448 : WARN_ON(*level < 0);
2145 448 : WARN_ON(*level >= BTRFS_MAX_LEVEL);
2146 :
2147 505 : while (*level > 0) {
2148 62 : WARN_ON(*level < 0);
2149 62 : WARN_ON(*level >= BTRFS_MAX_LEVEL);
2150 62 : cur = path->nodes[*level];
2151 :
2152 62 : WARN_ON(btrfs_header_level(cur) != *level);
2153 :
2154 124 : if (path->slots[*level] >=
2155 : btrfs_header_nritems(cur))
2156 : break;
2157 :
2158 : bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2159 57 : ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2160 57 : blocksize = btrfs_level_size(root, *level - 1);
2161 :
2162 57 : parent = path->nodes[*level];
2163 : root_owner = btrfs_header_owner(parent);
2164 :
2165 57 : next = btrfs_find_create_tree_block(root, bytenr, blocksize);
2166 57 : if (!next)
2167 : return -ENOMEM;
2168 :
2169 57 : if (*level == 1) {
2170 57 : ret = wc->process_func(root, next, wc, ptr_gen);
2171 57 : if (ret) {
2172 0 : free_extent_buffer(next);
2173 0 : return ret;
2174 : }
2175 :
2176 57 : path->slots[*level]++;
2177 57 : if (wc->free) {
2178 57 : ret = btrfs_read_buffer(next, ptr_gen);
2179 57 : if (ret) {
2180 0 : free_extent_buffer(next);
2181 0 : return ret;
2182 : }
2183 :
2184 57 : if (trans) {
2185 57 : btrfs_tree_lock(next);
2186 : btrfs_set_lock_blocking(next);
2187 57 : clean_tree_block(trans, root, next);
2188 57 : btrfs_wait_tree_block_writeback(next);
2189 57 : btrfs_tree_unlock(next);
2190 : }
2191 :
2192 57 : WARN_ON(root_owner !=
2193 : BTRFS_TREE_LOG_OBJECTID);
2194 57 : ret = btrfs_free_and_pin_reserved_extent(root,
2195 : bytenr, blocksize);
2196 57 : if (ret) {
2197 0 : free_extent_buffer(next);
2198 0 : return ret;
2199 : }
2200 : }
2201 57 : free_extent_buffer(next);
2202 57 : continue;
2203 : }
2204 0 : ret = btrfs_read_buffer(next, ptr_gen);
2205 0 : if (ret) {
2206 0 : free_extent_buffer(next);
2207 0 : return ret;
2208 : }
2209 :
2210 0 : WARN_ON(*level <= 0);
2211 0 : if (path->nodes[*level-1])
2212 0 : free_extent_buffer(path->nodes[*level-1]);
2213 0 : path->nodes[*level-1] = next;
2214 0 : *level = btrfs_header_level(next);
2215 0 : path->slots[*level] = 0;
2216 0 : cond_resched();
2217 : }
2218 448 : WARN_ON(*level < 0);
2219 448 : WARN_ON(*level >= BTRFS_MAX_LEVEL);
2220 :
2221 896 : path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2222 :
2223 448 : cond_resched();
2224 448 : return 0;
2225 : }
2226 :
2227 448 : static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2228 : struct btrfs_root *root,
2229 : struct btrfs_path *path, int *level,
2230 : struct walk_control *wc)
2231 : {
2232 : u64 root_owner;
2233 : int i;
2234 : int slot;
2235 : int ret;
2236 :
2237 1344 : for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2238 448 : slot = path->slots[i];
2239 896 : if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2240 0 : path->slots[i]++;
2241 0 : *level = i;
2242 0 : WARN_ON(*level == 0);
2243 : return 0;
2244 : } else {
2245 448 : struct extent_buffer *parent;
2246 896 : if (path->nodes[*level] == root->node)
2247 : parent = path->nodes[*level];
2248 : else
2249 0 : parent = path->nodes[*level + 1];
2250 :
2251 : root_owner = btrfs_header_owner(parent);
2252 896 : ret = wc->process_func(root, path->nodes[*level], wc,
2253 : btrfs_header_generation(path->nodes[*level]));
2254 448 : if (ret)
2255 : return ret;
2256 :
2257 448 : if (wc->free) {
2258 : struct extent_buffer *next;
2259 :
2260 448 : next = path->nodes[*level];
2261 :
2262 448 : if (trans) {
2263 448 : btrfs_tree_lock(next);
2264 : btrfs_set_lock_blocking(next);
2265 448 : clean_tree_block(trans, root, next);
2266 448 : btrfs_wait_tree_block_writeback(next);
2267 448 : btrfs_tree_unlock(next);
2268 : }
2269 :
2270 448 : WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2271 448 : ret = btrfs_free_and_pin_reserved_extent(root,
2272 : path->nodes[*level]->start,
2273 448 : path->nodes[*level]->len);
2274 448 : if (ret)
2275 : return ret;
2276 : }
2277 448 : free_extent_buffer(path->nodes[*level]);
2278 448 : path->nodes[*level] = NULL;
2279 448 : *level = i + 1;
2280 : }
2281 : }
2282 : return 1;
2283 : }
2284 :
2285 : /*
2286 : * drop the reference count on the tree rooted at 'snap'. This traverses
2287 : * the tree freeing any blocks that have a ref count of zero after being
2288 : * decremented.
2289 : */
2290 448 : static int walk_log_tree(struct btrfs_trans_handle *trans,
2291 : struct btrfs_root *log, struct walk_control *wc)
2292 : {
2293 : int ret = 0;
2294 : int wret;
2295 : int level;
2296 : struct btrfs_path *path;
2297 : int orig_level;
2298 :
2299 448 : path = btrfs_alloc_path();
2300 448 : if (!path)
2301 : return -ENOMEM;
2302 :
2303 896 : level = btrfs_header_level(log->node);
2304 : orig_level = level;
2305 448 : path->nodes[level] = log->node;
2306 448 : extent_buffer_get(log->node);
2307 448 : path->slots[level] = 0;
2308 :
2309 : while (1) {
2310 448 : wret = walk_down_log_tree(trans, log, path, &level, wc);
2311 448 : if (wret > 0)
2312 : break;
2313 448 : if (wret < 0) {
2314 : ret = wret;
2315 : goto out;
2316 : }
2317 :
2318 448 : wret = walk_up_log_tree(trans, log, path, &level, wc);
2319 448 : if (wret > 0)
2320 : break;
2321 0 : if (wret < 0) {
2322 : ret = wret;
2323 : goto out;
2324 : }
2325 : }
2326 :
2327 : /* was the root node processed? if not, catch it here */
2328 448 : if (path->nodes[orig_level]) {
2329 0 : ret = wc->process_func(log, path->nodes[orig_level], wc,
2330 : btrfs_header_generation(path->nodes[orig_level]));
2331 0 : if (ret)
2332 : goto out;
2333 0 : if (wc->free) {
2334 : struct extent_buffer *next;
2335 :
2336 0 : next = path->nodes[orig_level];
2337 :
2338 0 : if (trans) {
2339 0 : btrfs_tree_lock(next);
2340 : btrfs_set_lock_blocking(next);
2341 0 : clean_tree_block(trans, log, next);
2342 0 : btrfs_wait_tree_block_writeback(next);
2343 0 : btrfs_tree_unlock(next);
2344 : }
2345 :
2346 0 : WARN_ON(log->root_key.objectid !=
2347 : BTRFS_TREE_LOG_OBJECTID);
2348 0 : ret = btrfs_free_and_pin_reserved_extent(log, next->start,
2349 0 : next->len);
2350 : if (ret)
2351 : goto out;
2352 : }
2353 : }
2354 :
2355 : out:
2356 448 : btrfs_free_path(path);
2357 448 : return ret;
2358 : }
2359 :
2360 : /*
2361 : * helper function to update the item for a given subvolumes log root
2362 : * in the tree of log roots
2363 : */
2364 1477 : static int update_log_root(struct btrfs_trans_handle *trans,
2365 : struct btrfs_root *log)
2366 : {
2367 : int ret;
2368 :
2369 1477 : if (log->log_transid == 1) {
2370 : /* insert root item on the first sync */
2371 223 : ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
2372 : &log->root_key, &log->root_item);
2373 : } else {
2374 1254 : ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2375 : &log->root_key, &log->root_item);
2376 : }
2377 1477 : return ret;
2378 : }
2379 :
2380 18 : static void wait_log_commit(struct btrfs_trans_handle *trans,
2381 : struct btrfs_root *root, int transid)
2382 : {
2383 36 : DEFINE_WAIT(wait);
2384 18 : int index = transid % 2;
2385 :
2386 : /*
2387 : * we only allow two pending log transactions at a time,
2388 : * so we know that if ours is more than 2 older than the
2389 : * current transaction, we're done
2390 : */
2391 : do {
2392 18 : prepare_to_wait(&root->log_commit_wait[index],
2393 : &wait, TASK_UNINTERRUPTIBLE);
2394 18 : mutex_unlock(&root->log_mutex);
2395 :
2396 36 : if (root->log_transid_committed < transid &&
2397 18 : atomic_read(&root->log_commit[index]))
2398 18 : schedule();
2399 :
2400 18 : finish_wait(&root->log_commit_wait[index], &wait);
2401 18 : mutex_lock(&root->log_mutex);
2402 18 : } while (root->log_transid_committed < transid &&
2403 18 : atomic_read(&root->log_commit[index]));
2404 18 : }
2405 :
2406 2957 : static void wait_for_writer(struct btrfs_trans_handle *trans,
2407 : struct btrfs_root *root)
2408 : {
2409 5914 : DEFINE_WAIT(wait);
2410 :
2411 2958 : while (atomic_read(&root->log_writers)) {
2412 1 : prepare_to_wait(&root->log_writer_wait,
2413 : &wait, TASK_UNINTERRUPTIBLE);
2414 1 : mutex_unlock(&root->log_mutex);
2415 1 : if (atomic_read(&root->log_writers))
2416 1 : schedule();
2417 1 : mutex_lock(&root->log_mutex);
2418 1 : finish_wait(&root->log_writer_wait, &wait);
2419 : }
2420 2957 : }
2421 :
2422 0 : static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2423 : struct btrfs_log_ctx *ctx)
2424 : {
2425 0 : if (!ctx)
2426 0 : return;
2427 :
2428 0 : mutex_lock(&root->log_mutex);
2429 0 : list_del_init(&ctx->list);
2430 0 : mutex_unlock(&root->log_mutex);
2431 : }
2432 :
2433 : /*
2434 : * Invoked in log mutex context, or be sure there is no other task which
2435 : * can access the list.
2436 : */
2437 : static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2438 : int index, int error)
2439 : {
2440 : struct btrfs_log_ctx *ctx;
2441 :
2442 2956 : if (!error) {
2443 2954 : INIT_LIST_HEAD(&root->log_ctxs[index]);
2444 : return;
2445 : }
2446 :
2447 4 : list_for_each_entry(ctx, &root->log_ctxs[index], list)
2448 2 : ctx->log_ret = error;
2449 :
2450 : INIT_LIST_HEAD(&root->log_ctxs[index]);
2451 : }
2452 :
2453 : /*
2454 : * btrfs_sync_log does sends a given tree log down to the disk and
2455 : * updates the super blocks to record it. When this call is done,
2456 : * you know that any inodes previously logged are safely on disk only
2457 : * if it returns 0.
2458 : *
2459 : * Any other return value means you need to call btrfs_commit_transaction.
2460 : * Some of the edge cases for fsyncing directories that have had unlinks
2461 : * or renames done in the past mean that sometimes the only safe
2462 : * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2463 : * that has happened.
2464 : */
2465 4439 : int btrfs_sync_log(struct btrfs_trans_handle *trans,
2466 : struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2467 : {
2468 : int index1;
2469 : int index2;
2470 : int mark;
2471 : int ret;
2472 1483 : struct btrfs_root *log = root->log_root;
2473 1483 : struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
2474 : int log_transid = 0;
2475 : struct btrfs_log_ctx root_log_ctx;
2476 : struct blk_plug plug;
2477 :
2478 1483 : mutex_lock(&root->log_mutex);
2479 1483 : log_transid = ctx->log_transid;
2480 1483 : if (root->log_transid_committed >= log_transid) {
2481 0 : mutex_unlock(&root->log_mutex);
2482 0 : return ctx->log_ret;
2483 : }
2484 :
2485 1483 : index1 = log_transid % 2;
2486 2966 : if (atomic_read(&root->log_commit[index1])) {
2487 4 : wait_log_commit(trans, root, log_transid);
2488 4 : mutex_unlock(&root->log_mutex);
2489 4 : return ctx->log_ret;
2490 : }
2491 : ASSERT(log_transid == root->log_transid);
2492 : atomic_set(&root->log_commit[index1], 1);
2493 :
2494 : /* wait for previous tree log sync to complete */
2495 2958 : if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2496 14 : wait_log_commit(trans, root, log_transid - 1);
2497 :
2498 : while (1) {
2499 : int batch = atomic_read(&root->log_batch);
2500 : /* when we're on an ssd, just kick the log commit out */
2501 2960 : if (!btrfs_test_opt(root, SSD) &&
2502 : test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2503 6 : mutex_unlock(&root->log_mutex);
2504 6 : schedule_timeout_uninterruptible(1);
2505 6 : mutex_lock(&root->log_mutex);
2506 : }
2507 1480 : wait_for_writer(trans, root);
2508 1480 : if (batch == atomic_read(&root->log_batch))
2509 : break;
2510 : }
2511 :
2512 : /* bail out if we need to do a full commit */
2513 2958 : if (btrfs_need_log_full_commit(root->fs_info, trans)) {
2514 : ret = -EAGAIN;
2515 2 : btrfs_free_logged_extents(log, log_transid);
2516 2 : mutex_unlock(&root->log_mutex);
2517 2 : goto out;
2518 : }
2519 :
2520 1477 : if (log_transid % 2 == 0)
2521 : mark = EXTENT_DIRTY;
2522 : else
2523 : mark = EXTENT_NEW;
2524 :
2525 : /* we start IO on all the marked extents here, but we don't actually
2526 : * wait for them until later.
2527 : */
2528 1477 : blk_start_plug(&plug);
2529 1477 : ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2530 1477 : if (ret) {
2531 0 : blk_finish_plug(&plug);
2532 0 : btrfs_abort_transaction(trans, root, ret);
2533 0 : btrfs_free_logged_extents(log, log_transid);
2534 0 : btrfs_set_log_full_commit(root->fs_info, trans);
2535 0 : mutex_unlock(&root->log_mutex);
2536 0 : goto out;
2537 : }
2538 :
2539 1477 : btrfs_set_root_node(&log->root_item, log->node);
2540 :
2541 1477 : root->log_transid++;
2542 1477 : log->log_transid = root->log_transid;
2543 1477 : root->log_start_pid = 0;
2544 : /*
2545 : * IO has been started, blocks of the log tree have WRITTEN flag set
2546 : * in their headers. new modifications of the log will be written to
2547 : * new positions. so it's safe to allow log writers to go in.
2548 : */
2549 1477 : mutex_unlock(&root->log_mutex);
2550 :
2551 : btrfs_init_log_ctx(&root_log_ctx);
2552 :
2553 1477 : mutex_lock(&log_root_tree->log_mutex);
2554 1477 : atomic_inc(&log_root_tree->log_batch);
2555 1477 : atomic_inc(&log_root_tree->log_writers);
2556 :
2557 1477 : index2 = log_root_tree->log_transid % 2;
2558 1477 : list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2559 1477 : root_log_ctx.log_transid = log_root_tree->log_transid;
2560 :
2561 1477 : mutex_unlock(&log_root_tree->log_mutex);
2562 :
2563 1477 : ret = update_log_root(trans, log);
2564 :
2565 1477 : mutex_lock(&log_root_tree->log_mutex);
2566 1477 : if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2567 1477 : smp_mb();
2568 1477 : if (waitqueue_active(&log_root_tree->log_writer_wait))
2569 0 : wake_up(&log_root_tree->log_writer_wait);
2570 : }
2571 :
2572 1477 : if (ret) {
2573 0 : if (!list_empty(&root_log_ctx.list))
2574 : list_del_init(&root_log_ctx.list);
2575 :
2576 0 : blk_finish_plug(&plug);
2577 0 : btrfs_set_log_full_commit(root->fs_info, trans);
2578 :
2579 0 : if (ret != -ENOSPC) {
2580 0 : btrfs_abort_transaction(trans, root, ret);
2581 0 : mutex_unlock(&log_root_tree->log_mutex);
2582 0 : goto out;
2583 : }
2584 0 : btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2585 0 : btrfs_free_logged_extents(log, log_transid);
2586 0 : mutex_unlock(&log_root_tree->log_mutex);
2587 : ret = -EAGAIN;
2588 0 : goto out;
2589 : }
2590 :
2591 1477 : if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
2592 0 : mutex_unlock(&log_root_tree->log_mutex);
2593 0 : ret = root_log_ctx.log_ret;
2594 0 : goto out;
2595 : }
2596 :
2597 1477 : index2 = root_log_ctx.log_transid % 2;
2598 2954 : if (atomic_read(&log_root_tree->log_commit[index2])) {
2599 0 : blk_finish_plug(&plug);
2600 0 : btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2601 0 : wait_log_commit(trans, log_root_tree,
2602 : root_log_ctx.log_transid);
2603 0 : btrfs_free_logged_extents(log, log_transid);
2604 0 : mutex_unlock(&log_root_tree->log_mutex);
2605 0 : ret = root_log_ctx.log_ret;
2606 0 : goto out;
2607 : }
2608 : ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
2609 : atomic_set(&log_root_tree->log_commit[index2], 1);
2610 :
2611 2954 : if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2612 0 : wait_log_commit(trans, log_root_tree,
2613 0 : root_log_ctx.log_transid - 1);
2614 : }
2615 :
2616 1477 : wait_for_writer(trans, log_root_tree);
2617 :
2618 : /*
2619 : * now that we've moved on to the tree of log tree roots,
2620 : * check the full commit flag again
2621 : */
2622 2954 : if (btrfs_need_log_full_commit(root->fs_info, trans)) {
2623 0 : blk_finish_plug(&plug);
2624 0 : btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2625 0 : btrfs_free_logged_extents(log, log_transid);
2626 0 : mutex_unlock(&log_root_tree->log_mutex);
2627 : ret = -EAGAIN;
2628 0 : goto out_wake_log_root;
2629 : }
2630 :
2631 1477 : ret = btrfs_write_marked_extents(log_root_tree,
2632 : &log_root_tree->dirty_log_pages,
2633 : EXTENT_DIRTY | EXTENT_NEW);
2634 1477 : blk_finish_plug(&plug);
2635 1477 : if (ret) {
2636 0 : btrfs_set_log_full_commit(root->fs_info, trans);
2637 0 : btrfs_abort_transaction(trans, root, ret);
2638 0 : btrfs_free_logged_extents(log, log_transid);
2639 0 : mutex_unlock(&log_root_tree->log_mutex);
2640 0 : goto out_wake_log_root;
2641 : }
2642 1477 : btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2643 1477 : btrfs_wait_marked_extents(log_root_tree,
2644 : &log_root_tree->dirty_log_pages,
2645 : EXTENT_NEW | EXTENT_DIRTY);
2646 1477 : btrfs_wait_logged_extents(log, log_transid);
2647 :
2648 1477 : btrfs_set_super_log_root(root->fs_info->super_for_commit,
2649 2954 : log_root_tree->node->start);
2650 1477 : btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
2651 1477 : btrfs_header_level(log_root_tree->node));
2652 :
2653 1477 : log_root_tree->log_transid++;
2654 1477 : mutex_unlock(&log_root_tree->log_mutex);
2655 :
2656 : /*
2657 : * nobody else is going to jump in and write the the ctree
2658 : * super here because the log_commit atomic below is protecting
2659 : * us. We must be called with a transaction handle pinning
2660 : * the running transaction open, so a full commit can't hop
2661 : * in and cause problems either.
2662 : */
2663 1477 : ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
2664 1477 : if (ret) {
2665 0 : btrfs_set_log_full_commit(root->fs_info, trans);
2666 0 : btrfs_abort_transaction(trans, root, ret);
2667 0 : goto out_wake_log_root;
2668 : }
2669 :
2670 1477 : mutex_lock(&root->log_mutex);
2671 1477 : if (root->last_log_commit < log_transid)
2672 1254 : root->last_log_commit = log_transid;
2673 1477 : mutex_unlock(&root->log_mutex);
2674 :
2675 : out_wake_log_root:
2676 : /*
2677 : * We needn't get log_mutex here because we are sure all
2678 : * the other tasks are blocked.
2679 : */
2680 : btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
2681 :
2682 1477 : mutex_lock(&log_root_tree->log_mutex);
2683 1477 : log_root_tree->log_transid_committed++;
2684 : atomic_set(&log_root_tree->log_commit[index2], 0);
2685 1477 : mutex_unlock(&log_root_tree->log_mutex);
2686 :
2687 2954 : if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2688 0 : wake_up(&log_root_tree->log_commit_wait[index2]);
2689 : out:
2690 : /* See above. */
2691 : btrfs_remove_all_log_ctxs(root, index1, ret);
2692 :
2693 1479 : mutex_lock(&root->log_mutex);
2694 1479 : root->log_transid_committed++;
2695 : atomic_set(&root->log_commit[index1], 0);
2696 1479 : mutex_unlock(&root->log_mutex);
2697 :
2698 2958 : if (waitqueue_active(&root->log_commit_wait[index1]))
2699 18 : wake_up(&root->log_commit_wait[index1]);
2700 1479 : return ret;
2701 : }
2702 :
2703 448 : static void free_log_tree(struct btrfs_trans_handle *trans,
2704 : struct btrfs_root *log)
2705 : {
2706 : int ret;
2707 : u64 start;
2708 : u64 end;
2709 448 : struct walk_control wc = {
2710 : .free = 1,
2711 : .process_func = process_one_buffer
2712 : };
2713 :
2714 448 : ret = walk_log_tree(trans, log, &wc);
2715 : /* I don't think this can happen but just in case */
2716 448 : if (ret)
2717 0 : btrfs_abort_transaction(trans, log, ret);
2718 :
2719 : while (1) {
2720 499 : ret = find_first_extent_bit(&log->dirty_log_pages,
2721 : 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
2722 : NULL);
2723 499 : if (ret)
2724 : break;
2725 :
2726 51 : clear_extent_bits(&log->dirty_log_pages, start, end,
2727 : EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2728 51 : }
2729 :
2730 : /*
2731 : * We may have short-circuited the log tree with the full commit logic
2732 : * and left ordered extents on our list, so clear these out to keep us
2733 : * from leaking inodes and memory.
2734 : */
2735 448 : btrfs_free_logged_extents(log, 0);
2736 448 : btrfs_free_logged_extents(log, 1);
2737 :
2738 448 : free_extent_buffer(log->node);
2739 448 : kfree(log);
2740 448 : }
2741 :
2742 : /*
2743 : * free all the extents used by the tree log. This should be called
2744 : * at commit time of the full transaction
2745 : */
2746 2548 : int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2747 : {
2748 2548 : if (root->log_root) {
2749 224 : free_log_tree(trans, root->log_root);
2750 224 : root->log_root = NULL;
2751 : }
2752 2548 : return 0;
2753 : }
2754 :
2755 2098 : int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2756 : struct btrfs_fs_info *fs_info)
2757 : {
2758 2098 : if (fs_info->log_root_tree) {
2759 224 : free_log_tree(trans, fs_info->log_root_tree);
2760 224 : fs_info->log_root_tree = NULL;
2761 : }
2762 2098 : return 0;
2763 : }
2764 :
2765 : /*
2766 : * If both a file and directory are logged, and unlinks or renames are
2767 : * mixed in, we have a few interesting corners:
2768 : *
2769 : * create file X in dir Y
2770 : * link file X to X.link in dir Y
2771 : * fsync file X
2772 : * unlink file X but leave X.link
2773 : * fsync dir Y
2774 : *
2775 : * After a crash we would expect only X.link to exist. But file X
2776 : * didn't get fsync'd again so the log has back refs for X and X.link.
2777 : *
2778 : * We solve this by removing directory entries and inode backrefs from the
2779 : * log when a file that was logged in the current transaction is
2780 : * unlinked. Any later fsync will include the updated log entries, and
2781 : * we'll be able to reconstruct the proper directory items from backrefs.
2782 : *
2783 : * This optimizations allows us to avoid relogging the entire inode
2784 : * or the entire directory.
2785 : */
2786 12289 : int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2787 : struct btrfs_root *root,
2788 : const char *name, int name_len,
2789 : struct inode *dir, u64 index)
2790 : {
2791 : struct btrfs_root *log;
2792 : struct btrfs_dir_item *di;
2793 : struct btrfs_path *path;
2794 : int ret;
2795 : int err = 0;
2796 : int bytes_del = 0;
2797 : u64 dir_ino = btrfs_ino(dir);
2798 :
2799 12289 : if (BTRFS_I(dir)->logged_trans < trans->transid)
2800 : return 0;
2801 :
2802 151 : ret = join_running_log_trans(root);
2803 151 : if (ret)
2804 : return 0;
2805 :
2806 151 : mutex_lock(&BTRFS_I(dir)->log_mutex);
2807 :
2808 151 : log = root->log_root;
2809 151 : path = btrfs_alloc_path();
2810 151 : if (!path) {
2811 : err = -ENOMEM;
2812 : goto out_unlock;
2813 : }
2814 :
2815 151 : di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
2816 : name, name_len, -1);
2817 151 : if (IS_ERR(di)) {
2818 0 : err = PTR_ERR(di);
2819 0 : goto fail;
2820 : }
2821 151 : if (di) {
2822 0 : ret = btrfs_delete_one_dir_name(trans, log, path, di);
2823 : bytes_del += name_len;
2824 0 : if (ret) {
2825 : err = ret;
2826 : goto fail;
2827 : }
2828 : }
2829 151 : btrfs_release_path(path);
2830 151 : di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
2831 : index, name, name_len, -1);
2832 151 : if (IS_ERR(di)) {
2833 151 : err = PTR_ERR(di);
2834 151 : goto fail;
2835 : }
2836 0 : if (di) {
2837 0 : ret = btrfs_delete_one_dir_name(trans, log, path, di);
2838 0 : bytes_del += name_len;
2839 0 : if (ret) {
2840 : err = ret;
2841 : goto fail;
2842 : }
2843 : }
2844 :
2845 : /* update the directory size in the log to reflect the names
2846 : * we have removed
2847 : */
2848 0 : if (bytes_del) {
2849 : struct btrfs_key key;
2850 :
2851 0 : key.objectid = dir_ino;
2852 0 : key.offset = 0;
2853 0 : key.type = BTRFS_INODE_ITEM_KEY;
2854 0 : btrfs_release_path(path);
2855 :
2856 0 : ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2857 0 : if (ret < 0) {
2858 : err = ret;
2859 0 : goto fail;
2860 : }
2861 0 : if (ret == 0) {
2862 : struct btrfs_inode_item *item;
2863 : u64 i_size;
2864 :
2865 0 : item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2866 : struct btrfs_inode_item);
2867 0 : i_size = btrfs_inode_size(path->nodes[0], item);
2868 0 : if (i_size > bytes_del)
2869 0 : i_size -= bytes_del;
2870 : else
2871 : i_size = 0;
2872 0 : btrfs_set_inode_size(path->nodes[0], item, i_size);
2873 0 : btrfs_mark_buffer_dirty(path->nodes[0]);
2874 : } else
2875 : ret = 0;
2876 0 : btrfs_release_path(path);
2877 : }
2878 : fail:
2879 151 : btrfs_free_path(path);
2880 : out_unlock:
2881 151 : mutex_unlock(&BTRFS_I(dir)->log_mutex);
2882 151 : if (ret == -ENOSPC) {
2883 0 : btrfs_set_log_full_commit(root->fs_info, trans);
2884 : ret = 0;
2885 151 : } else if (ret < 0)
2886 0 : btrfs_abort_transaction(trans, root, ret);
2887 :
2888 151 : btrfs_end_log_trans(root);
2889 :
2890 151 : return err;
2891 : }
2892 :
2893 : /* see comments for btrfs_del_dir_entries_in_log */
2894 12289 : int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2895 : struct btrfs_root *root,
2896 : const char *name, int name_len,
2897 : struct inode *inode, u64 dirid)
2898 : {
2899 : struct btrfs_root *log;
2900 : u64 index;
2901 : int ret;
2902 :
2903 12289 : if (BTRFS_I(inode)->logged_trans < trans->transid)
2904 : return 0;
2905 :
2906 49 : ret = join_running_log_trans(root);
2907 49 : if (ret)
2908 : return 0;
2909 49 : log = root->log_root;
2910 49 : mutex_lock(&BTRFS_I(inode)->log_mutex);
2911 :
2912 49 : ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
2913 : dirid, &index);
2914 49 : mutex_unlock(&BTRFS_I(inode)->log_mutex);
2915 49 : if (ret == -ENOSPC) {
2916 0 : btrfs_set_log_full_commit(root->fs_info, trans);
2917 : ret = 0;
2918 49 : } else if (ret < 0 && ret != -ENOENT)
2919 0 : btrfs_abort_transaction(trans, root, ret);
2920 49 : btrfs_end_log_trans(root);
2921 :
2922 49 : return ret;
2923 : }
2924 :
2925 : /*
2926 : * creates a range item in the log for 'dirid'. first_offset and
2927 : * last_offset tell us which parts of the key space the log should
2928 : * be considered authoritative for.
2929 : */
2930 0 : static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2931 : struct btrfs_root *log,
2932 : struct btrfs_path *path,
2933 : int key_type, u64 dirid,
2934 : u64 first_offset, u64 last_offset)
2935 : {
2936 : int ret;
2937 : struct btrfs_key key;
2938 : struct btrfs_dir_log_item *item;
2939 :
2940 0 : key.objectid = dirid;
2941 0 : key.offset = first_offset;
2942 0 : if (key_type == BTRFS_DIR_ITEM_KEY)
2943 0 : key.type = BTRFS_DIR_LOG_ITEM_KEY;
2944 : else
2945 0 : key.type = BTRFS_DIR_LOG_INDEX_KEY;
2946 : ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2947 0 : if (ret)
2948 : return ret;
2949 :
2950 0 : item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2951 : struct btrfs_dir_log_item);
2952 0 : btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2953 0 : btrfs_mark_buffer_dirty(path->nodes[0]);
2954 0 : btrfs_release_path(path);
2955 0 : return 0;
2956 : }
2957 :
2958 : /*
2959 : * log all the items included in the current transaction for a given
2960 : * directory. This also creates the range items in the log tree required
2961 : * to replay anything deleted before the fsync
2962 : */
2963 0 : static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2964 : struct btrfs_root *root, struct inode *inode,
2965 : struct btrfs_path *path,
2966 : struct btrfs_path *dst_path, int key_type,
2967 : u64 min_offset, u64 *last_offset_ret)
2968 : {
2969 : struct btrfs_key min_key;
2970 : struct btrfs_root *log = root->log_root;
2971 0 : struct extent_buffer *src;
2972 : int err = 0;
2973 : int ret;
2974 : int i;
2975 : int nritems;
2976 : u64 first_offset = min_offset;
2977 : u64 last_offset = (u64)-1;
2978 : u64 ino = btrfs_ino(inode);
2979 :
2980 0 : log = root->log_root;
2981 :
2982 0 : min_key.objectid = ino;
2983 0 : min_key.type = key_type;
2984 0 : min_key.offset = min_offset;
2985 :
2986 0 : path->keep_locks = 1;
2987 :
2988 0 : ret = btrfs_search_forward(root, &min_key, path, trans->transid);
2989 :
2990 : /*
2991 : * we didn't find anything from this transaction, see if there
2992 : * is anything at all
2993 : */
2994 0 : if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
2995 0 : min_key.objectid = ino;
2996 0 : min_key.type = key_type;
2997 0 : min_key.offset = (u64)-1;
2998 0 : btrfs_release_path(path);
2999 0 : ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3000 0 : if (ret < 0) {
3001 0 : btrfs_release_path(path);
3002 0 : return ret;
3003 : }
3004 0 : ret = btrfs_previous_item(root, path, ino, key_type);
3005 :
3006 : /* if ret == 0 there are items for this type,
3007 : * create a range to tell us the last key of this type.
3008 : * otherwise, there are no items in this directory after
3009 : * *min_offset, and we create a range to indicate that.
3010 : */
3011 0 : if (ret == 0) {
3012 : struct btrfs_key tmp;
3013 0 : btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3014 : path->slots[0]);
3015 0 : if (key_type == tmp.type)
3016 0 : first_offset = max(min_offset, tmp.offset) + 1;
3017 : }
3018 : goto done;
3019 : }
3020 :
3021 : /* go backward to find any previous key */
3022 0 : ret = btrfs_previous_item(root, path, ino, key_type);
3023 0 : if (ret == 0) {
3024 : struct btrfs_key tmp;
3025 0 : btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3026 0 : if (key_type == tmp.type) {
3027 0 : first_offset = tmp.offset;
3028 0 : ret = overwrite_item(trans, log, dst_path,
3029 : path->nodes[0], path->slots[0],
3030 : &tmp);
3031 0 : if (ret) {
3032 : err = ret;
3033 0 : goto done;
3034 : }
3035 : }
3036 : }
3037 0 : btrfs_release_path(path);
3038 :
3039 : /* find the first key from this transaction again */
3040 0 : ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3041 0 : if (WARN_ON(ret != 0))
3042 : goto done;
3043 :
3044 : /*
3045 : * we have a block from this transaction, log every item in it
3046 : * from our directory
3047 : */
3048 : while (1) {
3049 : struct btrfs_key tmp;
3050 0 : src = path->nodes[0];
3051 0 : nritems = btrfs_header_nritems(src);
3052 0 : for (i = path->slots[0]; i < nritems; i++) {
3053 0 : btrfs_item_key_to_cpu(src, &min_key, i);
3054 :
3055 0 : if (min_key.objectid != ino || min_key.type != key_type)
3056 : goto done;
3057 0 : ret = overwrite_item(trans, log, dst_path, src, i,
3058 : &min_key);
3059 0 : if (ret) {
3060 : err = ret;
3061 : goto done;
3062 : }
3063 : }
3064 0 : path->slots[0] = nritems;
3065 :
3066 : /*
3067 : * look ahead to the next item and see if it is also
3068 : * from this directory and from this transaction
3069 : */
3070 0 : ret = btrfs_next_leaf(root, path);
3071 0 : if (ret == 1) {
3072 : last_offset = (u64)-1;
3073 : goto done;
3074 : }
3075 0 : btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3076 0 : if (tmp.objectid != ino || tmp.type != key_type) {
3077 : last_offset = (u64)-1;
3078 : goto done;
3079 : }
3080 0 : if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3081 0 : ret = overwrite_item(trans, log, dst_path,
3082 : path->nodes[0], path->slots[0],
3083 : &tmp);
3084 0 : if (ret)
3085 : err = ret;
3086 : else
3087 0 : last_offset = tmp.offset;
3088 : goto done;
3089 : }
3090 0 : }
3091 : done:
3092 0 : btrfs_release_path(path);
3093 0 : btrfs_release_path(dst_path);
3094 :
3095 0 : if (err == 0) {
3096 0 : *last_offset_ret = last_offset;
3097 : /*
3098 : * insert the log range keys to indicate where the log
3099 : * is valid
3100 : */
3101 0 : ret = insert_dir_log_key(trans, log, path, key_type,
3102 : ino, first_offset, last_offset);
3103 0 : if (ret)
3104 : err = ret;
3105 : }
3106 0 : return err;
3107 : }
3108 :
3109 : /*
3110 : * logging directories is very similar to logging inodes, We find all the items
3111 : * from the current transaction and write them to the log.
3112 : *
3113 : * The recovery code scans the directory in the subvolume, and if it finds a
3114 : * key in the range logged that is not present in the log tree, then it means
3115 : * that dir entry was unlinked during the transaction.
3116 : *
3117 : * In order for that scan to work, we must include one key smaller than
3118 : * the smallest logged by this transaction and one key larger than the largest
3119 : * key logged by this transaction.
3120 : */
3121 0 : static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3122 : struct btrfs_root *root, struct inode *inode,
3123 : struct btrfs_path *path,
3124 : struct btrfs_path *dst_path)
3125 : {
3126 : u64 min_key;
3127 : u64 max_key;
3128 : int ret;
3129 : int key_type = BTRFS_DIR_ITEM_KEY;
3130 :
3131 : again:
3132 : min_key = 0;
3133 0 : max_key = 0;
3134 : while (1) {
3135 0 : ret = log_dir_items(trans, root, inode, path,
3136 : dst_path, key_type, min_key,
3137 : &max_key);
3138 0 : if (ret)
3139 : return ret;
3140 0 : if (max_key == (u64)-1)
3141 : break;
3142 0 : min_key = max_key + 1;
3143 0 : }
3144 :
3145 0 : if (key_type == BTRFS_DIR_ITEM_KEY) {
3146 : key_type = BTRFS_DIR_INDEX_KEY;
3147 : goto again;
3148 : }
3149 : return 0;
3150 : }
3151 :
3152 : /*
3153 : * a helper function to drop items from the log before we relog an
3154 : * inode. max_key_type indicates the highest item type to remove.
3155 : * This cannot be run for file data extents because it does not
3156 : * free the extents they point to.
3157 : */
3158 313 : static int drop_objectid_items(struct btrfs_trans_handle *trans,
3159 : struct btrfs_root *log,
3160 : struct btrfs_path *path,
3161 : u64 objectid, int max_key_type)
3162 : {
3163 : int ret;
3164 : struct btrfs_key key;
3165 : struct btrfs_key found_key;
3166 : int start_slot;
3167 :
3168 313 : key.objectid = objectid;
3169 313 : key.type = max_key_type;
3170 313 : key.offset = (u64)-1;
3171 :
3172 : while (1) {
3173 456 : ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3174 456 : BUG_ON(ret == 0); /* Logic error */
3175 456 : if (ret < 0)
3176 : break;
3177 :
3178 456 : if (path->slots[0] == 0)
3179 : break;
3180 :
3181 266 : path->slots[0]--;
3182 266 : btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3183 : path->slots[0]);
3184 :
3185 266 : if (found_key.objectid != objectid)
3186 : break;
3187 :
3188 215 : found_key.offset = 0;
3189 215 : found_key.type = 0;
3190 215 : ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3191 : &start_slot);
3192 :
3193 215 : ret = btrfs_del_items(trans, log, path, start_slot,
3194 215 : path->slots[0] - start_slot + 1);
3195 : /*
3196 : * If start slot isn't 0 then we don't need to re-search, we've
3197 : * found the last guy with the objectid in this tree.
3198 : */
3199 215 : if (ret || start_slot != 0)
3200 : break;
3201 143 : btrfs_release_path(path);
3202 143 : }
3203 313 : btrfs_release_path(path);
3204 313 : if (ret > 0)
3205 : ret = 0;
3206 313 : return ret;
3207 : }
3208 :
3209 1808 : static void fill_inode_item(struct btrfs_trans_handle *trans,
3210 : struct extent_buffer *leaf,
3211 : struct btrfs_inode_item *item,
3212 : struct inode *inode, int log_inode_only)
3213 : {
3214 : struct btrfs_map_token token;
3215 :
3216 : btrfs_init_map_token(&token);
3217 :
3218 1808 : if (log_inode_only) {
3219 : /* set the generation to zero so the recover code
3220 : * can tell the difference between an logging
3221 : * just to say 'this inode exists' and a logging
3222 : * to say 'update this inode with these values'
3223 : */
3224 : btrfs_set_token_inode_generation(leaf, item, 0, &token);
3225 : btrfs_set_token_inode_size(leaf, item, 0, &token);
3226 : } else {
3227 1468 : btrfs_set_token_inode_generation(leaf, item,
3228 : BTRFS_I(inode)->generation,
3229 : &token);
3230 1468 : btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3231 : }
3232 :
3233 : btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3234 : btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3235 1808 : btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3236 1808 : btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3237 :
3238 1808 : btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3239 1808 : inode->i_atime.tv_sec, &token);
3240 1808 : btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3241 1808 : inode->i_atime.tv_nsec, &token);
3242 :
3243 1808 : btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3244 1808 : inode->i_mtime.tv_sec, &token);
3245 1808 : btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3246 1808 : inode->i_mtime.tv_nsec, &token);
3247 :
3248 1808 : btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3249 1808 : inode->i_ctime.tv_sec, &token);
3250 1808 : btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3251 1808 : inode->i_ctime.tv_nsec, &token);
3252 :
3253 1808 : btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3254 : &token);
3255 :
3256 1808 : btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3257 1808 : btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3258 1808 : btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3259 1808 : btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3260 : btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3261 1808 : }
3262 :
3263 1183 : static int log_inode_item(struct btrfs_trans_handle *trans,
3264 : struct btrfs_root *log, struct btrfs_path *path,
3265 : struct inode *inode)
3266 : {
3267 : struct btrfs_inode_item *inode_item;
3268 : int ret;
3269 :
3270 1183 : ret = btrfs_insert_empty_item(trans, log, path,
3271 : &BTRFS_I(inode)->location,
3272 : sizeof(*inode_item));
3273 1183 : if (ret && ret != -EEXIST)
3274 : return ret;
3275 2366 : inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3276 : struct btrfs_inode_item);
3277 1183 : fill_inode_item(trans, path->nodes[0], inode_item, inode, 0);
3278 1183 : btrfs_release_path(path);
3279 1183 : return 0;
3280 : }
3281 :
3282 710 : static noinline int copy_items(struct btrfs_trans_handle *trans,
3283 : struct inode *inode,
3284 : struct btrfs_path *dst_path,
3285 : struct btrfs_path *src_path, u64 *last_extent,
3286 : int start_slot, int nr, int inode_only)
3287 : {
3288 : unsigned long src_offset;
3289 : unsigned long dst_offset;
3290 710 : struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
3291 : struct btrfs_file_extent_item *extent;
3292 : struct btrfs_inode_item *inode_item;
3293 710 : struct extent_buffer *src = src_path->nodes[0];
3294 : struct btrfs_key first_key, last_key, key;
3295 : int ret;
3296 : struct btrfs_key *ins_keys;
3297 : u32 *ins_sizes;
3298 : char *ins_data;
3299 : int i;
3300 : struct list_head ordered_sums;
3301 710 : int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3302 : bool has_extents = false;
3303 : bool need_find_last_extent = true;
3304 : bool done = false;
3305 :
3306 : INIT_LIST_HEAD(&ordered_sums);
3307 :
3308 710 : ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3309 : nr * sizeof(u32), GFP_NOFS);
3310 710 : if (!ins_data)
3311 : return -ENOMEM;
3312 :
3313 710 : first_key.objectid = (u64)-1;
3314 :
3315 : ins_sizes = (u32 *)ins_data;
3316 710 : ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3317 :
3318 13431 : for (i = 0; i < nr; i++) {
3319 25442 : ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3320 25442 : btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3321 : }
3322 710 : ret = btrfs_insert_empty_items(trans, log, dst_path,
3323 : ins_keys, ins_sizes, nr);
3324 710 : if (ret) {
3325 0 : kfree(ins_data);
3326 0 : return ret;
3327 : }
3328 :
3329 12721 : for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3330 25442 : dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3331 : dst_path->slots[0]);
3332 :
3333 25442 : src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3334 :
3335 12721 : if ((i == (nr - 1)))
3336 710 : last_key = ins_keys[i];
3337 :
3338 12721 : if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3339 1250 : inode_item = btrfs_item_ptr(dst_path->nodes[0],
3340 : dst_path->slots[0],
3341 : struct btrfs_inode_item);
3342 625 : fill_inode_item(trans, dst_path->nodes[0], inode_item,
3343 : inode, inode_only == LOG_INODE_EXISTS);
3344 : } else {
3345 12096 : copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3346 12096 : src_offset, ins_sizes[i]);
3347 : }
3348 :
3349 : /*
3350 : * We set need_find_last_extent here in case we know we were
3351 : * processing other items and then walk into the first extent in
3352 : * the inode. If we don't hit an extent then nothing changes,
3353 : * we'll do the last search the next time around.
3354 : */
3355 12721 : if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3356 : has_extents = true;
3357 11371 : if (first_key.objectid == (u64)-1)
3358 285 : first_key = ins_keys[i];
3359 : } else {
3360 : need_find_last_extent = false;
3361 : }
3362 :
3363 : /* take a reference on file data extents so that truncates
3364 : * or deletes of this inode don't have to relog the inode
3365 : * again
3366 : */
3367 12721 : if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY &&
3368 : !skip_csum) {
3369 : int found_type;
3370 11371 : extent = btrfs_item_ptr(src, start_slot + i,
3371 : struct btrfs_file_extent_item);
3372 :
3373 11371 : if (btrfs_file_extent_generation(src, extent) < trans->transid)
3374 10608 : continue;
3375 :
3376 : found_type = btrfs_file_extent_type(src, extent);
3377 763 : if (found_type == BTRFS_FILE_EXTENT_REG) {
3378 : u64 ds, dl, cs, cl;
3379 : ds = btrfs_file_extent_disk_bytenr(src,
3380 : extent);
3381 : /* ds == 0 is a hole */
3382 662 : if (ds == 0)
3383 164 : continue;
3384 :
3385 : dl = btrfs_file_extent_disk_num_bytes(src,
3386 : extent);
3387 : cs = btrfs_file_extent_offset(src, extent);
3388 : cl = btrfs_file_extent_num_bytes(src,
3389 : extent);
3390 498 : if (btrfs_file_extent_compression(src,
3391 : extent)) {
3392 : cs = 0;
3393 : cl = dl;
3394 : }
3395 :
3396 996 : ret = btrfs_lookup_csums_range(
3397 498 : log->fs_info->csum_root,
3398 498 : ds + cs, ds + cs + cl - 1,
3399 : &ordered_sums, 0);
3400 498 : if (ret) {
3401 0 : btrfs_release_path(dst_path);
3402 0 : kfree(ins_data);
3403 0 : return ret;
3404 : }
3405 : }
3406 : }
3407 : }
3408 :
3409 710 : btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3410 710 : btrfs_release_path(dst_path);
3411 710 : kfree(ins_data);
3412 :
3413 : /*
3414 : * we have to do this after the loop above to avoid changing the
3415 : * log tree while trying to change the log tree.
3416 : */
3417 : ret = 0;
3418 1921 : while (!list_empty(&ordered_sums)) {
3419 501 : struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3420 : struct btrfs_ordered_sum,
3421 : list);
3422 501 : if (!ret)
3423 501 : ret = btrfs_csum_file_blocks(trans, log, sums);
3424 501 : list_del(&sums->list);
3425 501 : kfree(sums);
3426 : }
3427 :
3428 710 : if (!has_extents)
3429 : return ret;
3430 :
3431 285 : if (need_find_last_extent && *last_extent == first_key.offset) {
3432 : /*
3433 : * We don't have any leafs between our current one and the one
3434 : * we processed before that can have file extent items for our
3435 : * inode (and have a generation number smaller than our current
3436 : * transaction id).
3437 : */
3438 : need_find_last_extent = false;
3439 : }
3440 :
3441 : /*
3442 : * Because we use btrfs_search_forward we could skip leaves that were
3443 : * not modified and then assume *last_extent is valid when it really
3444 : * isn't. So back up to the previous leaf and read the end of the last
3445 : * extent before we go and fill in holes.
3446 : */
3447 285 : if (need_find_last_extent) {
3448 : u64 len;
3449 :
3450 21 : ret = btrfs_prev_leaf(BTRFS_I(inode)->root, src_path);
3451 21 : if (ret < 0)
3452 : return ret;
3453 21 : if (ret)
3454 : goto fill_holes;
3455 21 : if (src_path->slots[0])
3456 21 : src_path->slots[0]--;
3457 21 : src = src_path->nodes[0];
3458 21 : btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3459 63 : if (key.objectid != btrfs_ino(inode) ||
3460 21 : key.type != BTRFS_EXTENT_DATA_KEY)
3461 : goto fill_holes;
3462 42 : extent = btrfs_item_ptr(src, src_path->slots[0],
3463 : struct btrfs_file_extent_item);
3464 21 : if (btrfs_file_extent_type(src, extent) ==
3465 : BTRFS_FILE_EXTENT_INLINE) {
3466 0 : len = btrfs_file_extent_inline_len(src,
3467 : src_path->slots[0],
3468 : extent);
3469 0 : *last_extent = ALIGN(key.offset + len,
3470 : log->sectorsize);
3471 : } else {
3472 : len = btrfs_file_extent_num_bytes(src, extent);
3473 21 : *last_extent = key.offset + len;
3474 : }
3475 : }
3476 : fill_holes:
3477 : /* So we did prev_leaf, now we need to move to the next leaf, but a few
3478 : * things could have happened
3479 : *
3480 : * 1) A merge could have happened, so we could currently be on a leaf
3481 : * that holds what we were copying in the first place.
3482 : * 2) A split could have happened, and now not all of the items we want
3483 : * are on the same leaf.
3484 : *
3485 : * So we need to adjust how we search for holes, we need to drop the
3486 : * path and re-search for the first extent key we found, and then walk
3487 : * forward until we hit the last one we copied.
3488 : */
3489 285 : if (need_find_last_extent) {
3490 : /* btrfs_prev_leaf could return 1 without releasing the path */
3491 21 : btrfs_release_path(src_path);
3492 21 : ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &first_key,
3493 : src_path, 0, 0);
3494 21 : if (ret < 0)
3495 : return ret;
3496 : ASSERT(ret == 0);
3497 21 : src = src_path->nodes[0];
3498 21 : i = src_path->slots[0];
3499 : } else {
3500 : i = start_slot;
3501 : }
3502 :
3503 : /*
3504 : * Ok so here we need to go through and fill in any holes we may have
3505 : * to make sure that holes are punched for those areas in case they had
3506 : * extents previously.
3507 : */
3508 12121 : while (!done) {
3509 : u64 offset, len;
3510 : u64 extent_end;
3511 :
3512 23672 : if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3513 0 : ret = btrfs_next_leaf(BTRFS_I(inode)->root, src_path);
3514 0 : if (ret < 0)
3515 : return ret;
3516 : ASSERT(ret == 0);
3517 0 : src = src_path->nodes[0];
3518 : i = 0;
3519 : }
3520 :
3521 11836 : btrfs_item_key_to_cpu(src, &key, i);
3522 11836 : if (!btrfs_comp_cpu_keys(&key, &last_key))
3523 : done = true;
3524 35508 : if (key.objectid != btrfs_ino(inode) ||
3525 11836 : key.type != BTRFS_EXTENT_DATA_KEY) {
3526 465 : i++;
3527 465 : continue;
3528 : }
3529 11371 : extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3530 11371 : if (btrfs_file_extent_type(src, extent) ==
3531 : BTRFS_FILE_EXTENT_INLINE) {
3532 14 : len = btrfs_file_extent_inline_len(src, i, extent);
3533 14 : extent_end = ALIGN(key.offset + len, log->sectorsize);
3534 : } else {
3535 : len = btrfs_file_extent_num_bytes(src, extent);
3536 11357 : extent_end = key.offset + len;
3537 : }
3538 11371 : i++;
3539 :
3540 11371 : if (*last_extent == key.offset) {
3541 11371 : *last_extent = extent_end;
3542 11371 : continue;
3543 : }
3544 : offset = *last_extent;
3545 0 : len = key.offset - *last_extent;
3546 0 : ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
3547 : offset, 0, 0, len, 0, len, 0,
3548 : 0, 0);
3549 0 : if (ret)
3550 : break;
3551 0 : *last_extent = extent_end;
3552 : }
3553 : /*
3554 : * Need to let the callers know we dropped the path so they should
3555 : * re-search.
3556 : */
3557 285 : if (!ret && need_find_last_extent)
3558 : ret = 1;
3559 285 : return ret;
3560 : }
3561 :
3562 1322 : static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3563 : {
3564 : struct extent_map *em1, *em2;
3565 :
3566 : em1 = list_entry(a, struct extent_map, list);
3567 : em2 = list_entry(b, struct extent_map, list);
3568 :
3569 1322 : if (em1->start < em2->start)
3570 : return -1;
3571 160 : else if (em1->start > em2->start)
3572 : return 1;
3573 0 : return 0;
3574 : }
3575 :
3576 2403 : static int log_one_extent(struct btrfs_trans_handle *trans,
3577 : struct inode *inode, struct btrfs_root *root,
3578 : struct extent_map *em, struct btrfs_path *path,
3579 : struct list_head *logged_list)
3580 : {
3581 2403 : struct btrfs_root *log = root->log_root;
3582 : struct btrfs_file_extent_item *fi;
3583 : struct extent_buffer *leaf;
3584 : struct btrfs_ordered_extent *ordered;
3585 : struct list_head ordered_sums;
3586 : struct btrfs_map_token token;
3587 : struct btrfs_key key;
3588 2403 : u64 mod_start = em->mod_start;
3589 2403 : u64 mod_len = em->mod_len;
3590 : u64 csum_offset;
3591 : u64 csum_len;
3592 2403 : u64 extent_offset = em->start - em->orig_start;
3593 : u64 block_len;
3594 : int ret;
3595 2403 : bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3596 2403 : int extent_inserted = 0;
3597 :
3598 : INIT_LIST_HEAD(&ordered_sums);
3599 : btrfs_init_map_token(&token);
3600 :
3601 2403 : ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
3602 2403 : em->start + em->len, NULL, 0, 1,
3603 : sizeof(*fi), &extent_inserted);
3604 2403 : if (ret)
3605 : return ret;
3606 :
3607 2403 : if (!extent_inserted) {
3608 54 : key.objectid = btrfs_ino(inode);
3609 54 : key.type = BTRFS_EXTENT_DATA_KEY;
3610 54 : key.offset = em->start;
3611 :
3612 : ret = btrfs_insert_empty_item(trans, log, path, &key,
3613 : sizeof(*fi));
3614 54 : if (ret)
3615 : return ret;
3616 : }
3617 2403 : leaf = path->nodes[0];
3618 4806 : fi = btrfs_item_ptr(leaf, path->slots[0],
3619 : struct btrfs_file_extent_item);
3620 :
3621 2403 : btrfs_set_token_file_extent_generation(leaf, fi, em->generation,
3622 : &token);
3623 2403 : if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3624 : skip_csum = true;
3625 : btrfs_set_token_file_extent_type(leaf, fi,
3626 : BTRFS_FILE_EXTENT_PREALLOC,
3627 : &token);
3628 : } else {
3629 : btrfs_set_token_file_extent_type(leaf, fi,
3630 : BTRFS_FILE_EXTENT_REG,
3631 : &token);
3632 2369 : if (em->block_start == EXTENT_MAP_HOLE)
3633 : skip_csum = true;
3634 : }
3635 :
3636 2403 : block_len = max(em->block_len, em->orig_block_len);
3637 2403 : if (em->compress_type != BTRFS_COMPRESS_NONE) {
3638 3 : btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3639 : em->block_start,
3640 : &token);
3641 : btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3642 : &token);
3643 2400 : } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
3644 2323 : btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3645 : em->block_start -
3646 : extent_offset, &token);
3647 : btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3648 : &token);
3649 : } else {
3650 : btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
3651 : btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
3652 : &token);
3653 : }
3654 :
3655 2403 : btrfs_set_token_file_extent_offset(leaf, fi,
3656 2403 : em->start - em->orig_start,
3657 : &token);
3658 2403 : btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
3659 2403 : btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
3660 2403 : btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
3661 : &token);
3662 : btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
3663 : btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
3664 2403 : btrfs_mark_buffer_dirty(leaf);
3665 :
3666 2403 : btrfs_release_path(path);
3667 2403 : if (ret) {
3668 : return ret;
3669 : }
3670 :
3671 2403 : if (skip_csum)
3672 : return 0;
3673 :
3674 : /*
3675 : * First check and see if our csums are on our outstanding ordered
3676 : * extents.
3677 : */
3678 4595 : list_for_each_entry(ordered, logged_list, log_list) {
3679 : struct btrfs_ordered_sum *sum;
3680 :
3681 2327 : if (!mod_len)
3682 : break;
3683 :
3684 3508 : if (ordered->file_offset + ordered->len <= mod_start ||
3685 1205 : mod_start + mod_len <= ordered->file_offset)
3686 1128 : continue;
3687 :
3688 : /*
3689 : * We are going to copy all the csums on this ordered extent, so
3690 : * go ahead and adjust mod_start and mod_len in case this
3691 : * ordered extent has already been logged.
3692 : */
3693 1175 : if (ordered->file_offset > mod_start) {
3694 0 : if (ordered->file_offset + ordered->len >=
3695 : mod_start + mod_len)
3696 0 : mod_len = ordered->file_offset - mod_start;
3697 : /*
3698 : * If we have this case
3699 : *
3700 : * |--------- logged extent ---------|
3701 : * |----- ordered extent ----|
3702 : *
3703 : * Just don't mess with mod_start and mod_len, we'll
3704 : * just end up logging more csums than we need and it
3705 : * will be ok.
3706 : */
3707 : } else {
3708 1175 : if (ordered->file_offset + ordered->len <
3709 : mod_start + mod_len) {
3710 0 : mod_len = (mod_start + mod_len) -
3711 : (ordered->file_offset + ordered->len);
3712 : mod_start = ordered->file_offset +
3713 : ordered->len;
3714 : } else {
3715 : mod_len = 0;
3716 : }
3717 : }
3718 :
3719 : /*
3720 : * To keep us from looping for the above case of an ordered
3721 : * extent that falls inside of the logged extent.
3722 : */
3723 1175 : if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
3724 1175 : &ordered->flags))
3725 0 : continue;
3726 :
3727 1175 : if (ordered->csum_bytes_left) {
3728 0 : btrfs_start_ordered_extent(inode, ordered, 0);
3729 0 : wait_event(ordered->wait,
3730 : ordered->csum_bytes_left == 0);
3731 : }
3732 :
3733 2350 : list_for_each_entry(sum, &ordered->list, list) {
3734 1175 : ret = btrfs_csum_file_blocks(trans, log, sum);
3735 1175 : if (ret)
3736 : goto unlocked;
3737 : }
3738 :
3739 : }
3740 : unlocked:
3741 :
3742 2292 : if (!mod_len || ret)
3743 : return ret;
3744 :
3745 1117 : if (em->compress_type) {
3746 : csum_offset = 0;
3747 : csum_len = block_len;
3748 : } else {
3749 1114 : csum_offset = mod_start - em->start;
3750 : csum_len = mod_len;
3751 : }
3752 :
3753 : /* block start is already adjusted for the file extent offset. */
3754 1117 : ret = btrfs_lookup_csums_range(log->fs_info->csum_root,
3755 : em->block_start + csum_offset,
3756 1117 : em->block_start + csum_offset +
3757 : csum_len - 1, &ordered_sums, 0);
3758 1117 : if (ret)
3759 : return ret;
3760 :
3761 2234 : while (!list_empty(&ordered_sums)) {
3762 1117 : struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3763 : struct btrfs_ordered_sum,
3764 : list);
3765 1117 : if (!ret)
3766 1117 : ret = btrfs_csum_file_blocks(trans, log, sums);
3767 1117 : list_del(&sums->list);
3768 1117 : kfree(sums);
3769 : }
3770 :
3771 : return ret;
3772 : }
3773 :
3774 1195 : static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
3775 2403 : struct btrfs_root *root,
3776 : struct inode *inode,
3777 : struct btrfs_path *path,
3778 : struct list_head *logged_list)
3779 : {
3780 : struct extent_map *em, *n;
3781 : struct list_head extents;
3782 1195 : struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3783 : u64 test_gen;
3784 : int ret = 0;
3785 : int num = 0;
3786 :
3787 : INIT_LIST_HEAD(&extents);
3788 :
3789 1195 : write_lock(&tree->lock);
3790 1195 : test_gen = root->fs_info->last_trans_committed;
3791 :
3792 4270 : list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
3793 : list_del_init(&em->list);
3794 :
3795 : /*
3796 : * Just an arbitrary number, this can be really CPU intensive
3797 : * once we start getting a lot of extents, and really once we
3798 : * have a bunch of extents we just want to commit since it will
3799 : * be faster.
3800 : */
3801 3075 : if (++num > 32768) {
3802 : list_del_init(&tree->modified_extents);
3803 : ret = -EFBIG;
3804 0 : goto process;
3805 : }
3806 :
3807 3075 : if (em->generation <= test_gen)
3808 672 : continue;
3809 : /* Need a ref to keep it from getting evicted from cache */
3810 2403 : atomic_inc(&em->refs);
3811 : set_bit(EXTENT_FLAG_LOGGING, &em->flags);
3812 : list_add_tail(&em->list, &extents);
3813 2403 : num++;
3814 : }
3815 :
3816 1195 : list_sort(NULL, &extents, extent_cmp);
3817 :
3818 : process:
3819 3598 : while (!list_empty(&extents)) {
3820 2403 : em = list_entry(extents.next, struct extent_map, list);
3821 :
3822 2403 : list_del_init(&em->list);
3823 :
3824 : /*
3825 : * If we had an error we just need to delete everybody from our
3826 : * private list.
3827 : */
3828 2403 : if (ret) {
3829 0 : clear_em_logging(tree, em);
3830 0 : free_extent_map(em);
3831 0 : continue;
3832 : }
3833 :
3834 : write_unlock(&tree->lock);
3835 :
3836 2403 : ret = log_one_extent(trans, inode, root, em, path, logged_list);
3837 2403 : write_lock(&tree->lock);
3838 2403 : clear_em_logging(tree, em);
3839 2403 : free_extent_map(em);
3840 : }
3841 1195 : WARN_ON(!list_empty(&extents));
3842 : write_unlock(&tree->lock);
3843 :
3844 1195 : btrfs_release_path(path);
3845 1195 : return ret;
3846 : }
3847 :
3848 : /* log a single inode in the tree log.
3849 : * At least one parent directory for this inode must exist in the tree
3850 : * or be logged already.
3851 : *
3852 : * Any items from this inode changed by the current transaction are copied
3853 : * to the log tree. An extra reference is taken on any extents in this
3854 : * file, allowing us to avoid a whole pile of corner cases around logging
3855 : * blocks that have been removed from the tree.
3856 : *
3857 : * See LOG_INODE_ALL and related defines for a description of what inode_only
3858 : * does.
3859 : *
3860 : * This handles both files and directories.
3861 : */
3862 1824 : static int btrfs_log_inode(struct btrfs_trans_handle *trans,
3863 : struct btrfs_root *root, struct inode *inode,
3864 : int inode_only,
3865 : const loff_t start,
3866 : const loff_t end)
3867 : {
3868 : struct btrfs_path *path;
3869 : struct btrfs_path *dst_path;
3870 : struct btrfs_key min_key;
3871 : struct btrfs_key max_key;
3872 1824 : struct btrfs_root *log = root->log_root;
3873 : struct extent_buffer *src = NULL;
3874 1824 : LIST_HEAD(logged_list);
3875 1824 : u64 last_extent = 0;
3876 : int err = 0;
3877 : int ret;
3878 : int nritems;
3879 : int ins_start_slot = 0;
3880 : int ins_nr;
3881 : bool fast_search = false;
3882 : u64 ino = btrfs_ino(inode);
3883 : struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3884 :
3885 1824 : path = btrfs_alloc_path();
3886 1824 : if (!path)
3887 : return -ENOMEM;
3888 1824 : dst_path = btrfs_alloc_path();
3889 1824 : if (!dst_path) {
3890 0 : btrfs_free_path(path);
3891 0 : return -ENOMEM;
3892 : }
3893 :
3894 1824 : min_key.objectid = ino;
3895 1824 : min_key.type = BTRFS_INODE_ITEM_KEY;
3896 1824 : min_key.offset = 0;
3897 :
3898 : max_key.objectid = ino;
3899 :
3900 :
3901 : /* today the code can only do partial logging of directories */
3902 3388 : if (S_ISDIR(inode->i_mode) ||
3903 : (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3904 1236 : &BTRFS_I(inode)->runtime_flags) &&
3905 : inode_only == LOG_INODE_EXISTS))
3906 : max_key.type = BTRFS_XATTR_ITEM_KEY;
3907 : else
3908 : max_key.type = (u8)-1;
3909 : max_key.offset = (u64)-1;
3910 :
3911 : /* Only run delayed items if we are a dir or a new file */
3912 3388 : if (S_ISDIR(inode->i_mode) ||
3913 1564 : BTRFS_I(inode)->generation > root->fs_info->last_trans_committed) {
3914 1527 : ret = btrfs_commit_inode_delayed_items(trans, inode);
3915 1527 : if (ret) {
3916 0 : btrfs_free_path(path);
3917 0 : btrfs_free_path(dst_path);
3918 0 : return ret;
3919 : }
3920 : }
3921 :
3922 1824 : mutex_lock(&BTRFS_I(inode)->log_mutex);
3923 :
3924 1824 : btrfs_get_logged_extents(inode, &logged_list);
3925 :
3926 : /*
3927 : * a brute force approach to making sure we get the most uptodate
3928 : * copies of everything.
3929 : */
3930 1824 : if (S_ISDIR(inode->i_mode)) {
3931 : int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
3932 :
3933 260 : if (inode_only == LOG_INODE_EXISTS)
3934 : max_key_type = BTRFS_XATTR_ITEM_KEY;
3935 260 : ret = drop_objectid_items(trans, log, path, ino, max_key_type);
3936 : } else {
3937 1564 : if (test_and_clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3938 1564 : &BTRFS_I(inode)->runtime_flags)) {
3939 : clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3940 : &BTRFS_I(inode)->runtime_flags);
3941 328 : ret = btrfs_truncate_inode_items(trans, log,
3942 : inode, 0, 0);
3943 1236 : } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3944 1211 : &BTRFS_I(inode)->runtime_flags) ||
3945 : inode_only == LOG_INODE_EXISTS) {
3946 53 : if (inode_only == LOG_INODE_ALL)
3947 : fast_search = true;
3948 : max_key.type = BTRFS_XATTR_ITEM_KEY;
3949 53 : ret = drop_objectid_items(trans, log, path, ino,
3950 : max_key.type);
3951 : } else {
3952 1183 : if (inode_only == LOG_INODE_ALL)
3953 : fast_search = true;
3954 1183 : ret = log_inode_item(trans, log, dst_path, inode);
3955 1183 : if (ret) {
3956 : err = ret;
3957 : goto out_unlock;
3958 : }
3959 : goto log_extents;
3960 : }
3961 :
3962 : }
3963 641 : if (ret) {
3964 : err = ret;
3965 : goto out_unlock;
3966 : }
3967 641 : path->keep_locks = 1;
3968 :
3969 : while (1) {
3970 : ins_nr = 0;
3971 783 : ret = btrfs_search_forward(root, &min_key,
3972 : path, trans->transid);
3973 783 : if (ret != 0)
3974 : break;
3975 : again:
3976 : /* note, ins_nr might be > 0 here, cleanup outside the loop */
3977 13306 : if (min_key.objectid != ino)
3978 : break;
3979 13020 : if (min_key.type > max_key.type)
3980 : break;
3981 :
3982 : src = path->nodes[0];
3983 12721 : if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
3984 12011 : ins_nr++;
3985 12011 : goto next_slot;
3986 710 : } else if (!ins_nr) {
3987 710 : ins_start_slot = path->slots[0];
3988 : ins_nr = 1;
3989 710 : goto next_slot;
3990 : }
3991 :
3992 0 : ret = copy_items(trans, inode, dst_path, path, &last_extent,
3993 : ins_start_slot, ins_nr, inode_only);
3994 0 : if (ret < 0) {
3995 : err = ret;
3996 : goto out_unlock;
3997 0 : } if (ret) {
3998 : ins_nr = 0;
3999 0 : btrfs_release_path(path);
4000 0 : continue;
4001 : }
4002 : ins_nr = 1;
4003 0 : ins_start_slot = path->slots[0];
4004 : next_slot:
4005 :
4006 25442 : nritems = btrfs_header_nritems(path->nodes[0]);
4007 12721 : path->slots[0]++;
4008 12721 : if (path->slots[0] < nritems) {
4009 12579 : btrfs_item_key_to_cpu(path->nodes[0], &min_key,
4010 : path->slots[0]);
4011 12579 : goto again;
4012 : }
4013 142 : if (ins_nr) {
4014 142 : ret = copy_items(trans, inode, dst_path, path,
4015 : &last_extent, ins_start_slot,
4016 : ins_nr, inode_only);
4017 142 : if (ret < 0) {
4018 : err = ret;
4019 : goto out_unlock;
4020 : }
4021 : ret = 0;
4022 : ins_nr = 0;
4023 : }
4024 142 : btrfs_release_path(path);
4025 :
4026 142 : if (min_key.offset < (u64)-1) {
4027 142 : min_key.offset++;
4028 0 : } else if (min_key.type < max_key.type) {
4029 0 : min_key.type++;
4030 0 : min_key.offset = 0;
4031 : } else {
4032 : break;
4033 : }
4034 : }
4035 641 : if (ins_nr) {
4036 568 : ret = copy_items(trans, inode, dst_path, path, &last_extent,
4037 : ins_start_slot, ins_nr, inode_only);
4038 568 : if (ret < 0) {
4039 : err = ret;
4040 : goto out_unlock;
4041 : }
4042 : ret = 0;
4043 : ins_nr = 0;
4044 : }
4045 :
4046 : log_extents:
4047 1824 : btrfs_release_path(path);
4048 1824 : btrfs_release_path(dst_path);
4049 1824 : if (fast_search) {
4050 1195 : ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
4051 : &logged_list);
4052 1195 : if (ret) {
4053 : err = ret;
4054 : goto out_unlock;
4055 : }
4056 629 : } else if (inode_only == LOG_INODE_ALL) {
4057 : struct extent_map *em, *n;
4058 :
4059 288 : write_lock(&em_tree->lock);
4060 : /*
4061 : * We can't just remove every em if we're called for a ranged
4062 : * fsync - that is, one that doesn't cover the whole possible
4063 : * file range (0 to LLONG_MAX). This is because we can have
4064 : * em's that fall outside the range we're logging and therefore
4065 : * their ordered operations haven't completed yet
4066 : * (btrfs_finish_ordered_io() not invoked yet). This means we
4067 : * didn't get their respective file extent item in the fs/subvol
4068 : * tree yet, and need to let the next fast fsync (one which
4069 : * consults the list of modified extent maps) find the em so
4070 : * that it logs a matching file extent item and waits for the
4071 : * respective ordered operation to complete (if it's still
4072 : * running).
4073 : *
4074 : * Removing every em outside the range we're logging would make
4075 : * the next fast fsync not log their matching file extent items,
4076 : * therefore making us lose data after a log replay.
4077 : */
4078 3038 : list_for_each_entry_safe(em, n, &em_tree->modified_extents,
4079 : list) {
4080 2750 : const u64 mod_end = em->mod_start + em->mod_len - 1;
4081 :
4082 2750 : if (em->mod_start >= start && mod_end <= end)
4083 : list_del_init(&em->list);
4084 : }
4085 : write_unlock(&em_tree->lock);
4086 : }
4087 :
4088 1824 : if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
4089 0 : ret = log_directory_changes(trans, root, inode, path, dst_path);
4090 0 : if (ret) {
4091 : err = ret;
4092 : goto out_unlock;
4093 : }
4094 : }
4095 :
4096 1824 : BTRFS_I(inode)->logged_trans = trans->transid;
4097 1824 : BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
4098 : out_unlock:
4099 1824 : if (unlikely(err))
4100 0 : btrfs_put_logged_extents(&logged_list);
4101 : else
4102 1824 : btrfs_submit_logged_extents(&logged_list, log);
4103 1824 : mutex_unlock(&BTRFS_I(inode)->log_mutex);
4104 :
4105 1824 : btrfs_free_path(path);
4106 1824 : btrfs_free_path(dst_path);
4107 1824 : return err;
4108 : }
4109 :
4110 : /*
4111 : * follow the dentry parent pointers up the chain and see if any
4112 : * of the directories in it require a full commit before they can
4113 : * be logged. Returns zero if nothing special needs to be done or 1 if
4114 : * a full commit is required.
4115 : */
4116 1727 : static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
4117 : struct inode *inode,
4118 : struct dentry *parent,
4119 : struct super_block *sb,
4120 : u64 last_committed)
4121 : {
4122 : int ret = 0;
4123 : struct btrfs_root *root;
4124 : struct dentry *old_parent = NULL;
4125 : struct inode *orig_inode = inode;
4126 :
4127 : /*
4128 : * for regular files, if its inode is already on disk, we don't
4129 : * have to worry about the parents at all. This is because
4130 : * we can use the last_unlink_trans field to record renames
4131 : * and other fun in this file.
4132 : */
4133 3257 : if (S_ISREG(inode->i_mode) &&
4134 1911 : BTRFS_I(inode)->generation <= last_committed &&
4135 305 : BTRFS_I(inode)->last_unlink_trans <= last_committed)
4136 : goto out;
4137 :
4138 1427 : if (!S_ISDIR(inode->i_mode)) {
4139 1413 : if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
4140 : goto out;
4141 : inode = parent->d_inode;
4142 : }
4143 :
4144 : while (1) {
4145 : /*
4146 : * If we are logging a directory then we start with our inode,
4147 : * not our parents inode, so we need to skipp setting the
4148 : * logged_trans so that further down in the log code we don't
4149 : * think this inode has already been logged.
4150 : */
4151 2680 : if (inode != orig_inode)
4152 2666 : BTRFS_I(inode)->logged_trans = trans->transid;
4153 2680 : smp_mb();
4154 :
4155 2680 : if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
4156 76 : root = BTRFS_I(inode)->root;
4157 :
4158 : /*
4159 : * make sure any commits to the log are forced
4160 : * to be full commits
4161 : */
4162 76 : btrfs_set_log_full_commit(root->fs_info, trans);
4163 : ret = 1;
4164 76 : break;
4165 : }
4166 :
4167 2604 : if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
4168 : break;
4169 :
4170 2604 : if (IS_ROOT(parent))
4171 : break;
4172 :
4173 1253 : parent = dget_parent(parent);
4174 1253 : dput(old_parent);
4175 : old_parent = parent;
4176 1253 : inode = parent->d_inode;
4177 :
4178 1253 : }
4179 1427 : dput(old_parent);
4180 : out:
4181 1651 : return ret;
4182 : }
4183 :
4184 : /*
4185 : * helper function around btrfs_log_inode to make sure newly created
4186 : * parent directories also end up in the log. A minimal inode and backref
4187 : * only logging is done of any parent directories that are older than
4188 : * the last committed transaction
4189 : */
4190 1682 : static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
4191 : struct btrfs_root *root, struct inode *inode,
4192 : struct dentry *parent,
4193 : const loff_t start,
4194 : const loff_t end,
4195 : int exists_only,
4196 : struct btrfs_log_ctx *ctx)
4197 : {
4198 1682 : int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
4199 : struct super_block *sb;
4200 : struct dentry *old_parent = NULL;
4201 : int ret = 0;
4202 1682 : u64 last_committed = root->fs_info->last_trans_committed;
4203 :
4204 1682 : sb = inode->i_sb;
4205 :
4206 1682 : if (btrfs_test_opt(root, NOTREELOG)) {
4207 : ret = 1;
4208 : goto end_no_trans;
4209 : }
4210 :
4211 : /*
4212 : * The prev transaction commit doesn't complete, we need do
4213 : * full commit by ourselves.
4214 : */
4215 1682 : if (root->fs_info->last_trans_log_full_commit >
4216 : root->fs_info->last_trans_committed) {
4217 : ret = 1;
4218 : goto end_no_trans;
4219 : }
4220 :
4221 3302 : if (root != BTRFS_I(inode)->root ||
4222 : btrfs_root_refs(&root->root_item) == 0) {
4223 : ret = 1;
4224 : goto end_no_trans;
4225 : }
4226 :
4227 1651 : ret = check_parent_dirs_for_sync(trans, inode, parent,
4228 : sb, last_committed);
4229 1651 : if (ret)
4230 : goto end_no_trans;
4231 :
4232 3150 : if (btrfs_inode_in_log(inode, trans->transid)) {
4233 : ret = BTRFS_NO_LOG_SYNC;
4234 : goto end_no_trans;
4235 : }
4236 :
4237 1575 : ret = start_log_trans(trans, root, ctx);
4238 1575 : if (ret)
4239 : goto end_no_trans;
4240 :
4241 1575 : ret = btrfs_log_inode(trans, root, inode, inode_only, start, end);
4242 1575 : if (ret)
4243 : goto end_trans;
4244 :
4245 : /*
4246 : * for regular files, if its inode is already on disk, we don't
4247 : * have to worry about the parents at all. This is because
4248 : * we can use the last_unlink_trans field to record renames
4249 : * and other fun in this file.
4250 : */
4251 3111 : if (S_ISREG(inode->i_mode) &&
4252 1814 : BTRFS_I(inode)->generation <= last_committed &&
4253 278 : BTRFS_I(inode)->last_unlink_trans <= last_committed) {
4254 : ret = 0;
4255 : goto end_trans;
4256 : }
4257 :
4258 : inode_only = LOG_INODE_EXISTS;
4259 : while (1) {
4260 2497 : if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
4261 : break;
4262 :
4263 : inode = parent->d_inode;
4264 2497 : if (root != BTRFS_I(inode)->root)
4265 : break;
4266 :
4267 4894 : if (BTRFS_I(inode)->generation >
4268 2447 : root->fs_info->last_trans_committed) {
4269 249 : ret = btrfs_log_inode(trans, root, inode, inode_only,
4270 : 0, LLONG_MAX);
4271 249 : if (ret)
4272 : goto end_trans;
4273 : }
4274 2447 : if (IS_ROOT(parent))
4275 : break;
4276 :
4277 1146 : parent = dget_parent(parent);
4278 1146 : dput(old_parent);
4279 : old_parent = parent;
4280 1146 : }
4281 : ret = 0;
4282 : end_trans:
4283 1575 : dput(old_parent);
4284 1575 : if (ret < 0) {
4285 0 : btrfs_set_log_full_commit(root->fs_info, trans);
4286 : ret = 1;
4287 : }
4288 :
4289 1575 : if (ret)
4290 0 : btrfs_remove_log_ctx(root, ctx);
4291 1575 : btrfs_end_log_trans(root);
4292 : end_no_trans:
4293 1682 : return ret;
4294 : }
4295 :
4296 : /*
4297 : * it is not safe to log dentry if the chunk root has added new
4298 : * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
4299 : * If this returns 1, you must commit the transaction to safely get your
4300 : * data on disk.
4301 : */
4302 1569 : int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
4303 : struct btrfs_root *root, struct dentry *dentry,
4304 : const loff_t start,
4305 : const loff_t end,
4306 : struct btrfs_log_ctx *ctx)
4307 : {
4308 1569 : struct dentry *parent = dget_parent(dentry);
4309 : int ret;
4310 :
4311 1569 : ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent,
4312 : start, end, 0, ctx);
4313 1569 : dput(parent);
4314 :
4315 1569 : return ret;
4316 : }
4317 :
4318 : /*
4319 : * should be called during mount to recover any replay any log trees
4320 : * from the FS
4321 : */
4322 0 : int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
4323 : {
4324 : int ret;
4325 : struct btrfs_path *path;
4326 : struct btrfs_trans_handle *trans;
4327 : struct btrfs_key key;
4328 : struct btrfs_key found_key;
4329 : struct btrfs_key tmp_key;
4330 : struct btrfs_root *log;
4331 0 : struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
4332 0 : struct walk_control wc = {
4333 : .process_func = process_one_buffer,
4334 : .stage = 0,
4335 : };
4336 :
4337 0 : path = btrfs_alloc_path();
4338 0 : if (!path)
4339 : return -ENOMEM;
4340 :
4341 0 : fs_info->log_root_recovering = 1;
4342 :
4343 0 : trans = btrfs_start_transaction(fs_info->tree_root, 0);
4344 0 : if (IS_ERR(trans)) {
4345 0 : ret = PTR_ERR(trans);
4346 0 : goto error;
4347 : }
4348 :
4349 0 : wc.trans = trans;
4350 0 : wc.pin = 1;
4351 :
4352 0 : ret = walk_log_tree(trans, log_root_tree, &wc);
4353 0 : if (ret) {
4354 0 : btrfs_error(fs_info, ret, "Failed to pin buffers while "
4355 : "recovering log root tree.");
4356 0 : goto error;
4357 : }
4358 :
4359 : again:
4360 0 : key.objectid = BTRFS_TREE_LOG_OBJECTID;
4361 0 : key.offset = (u64)-1;
4362 : btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
4363 :
4364 : while (1) {
4365 0 : ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
4366 :
4367 0 : if (ret < 0) {
4368 0 : btrfs_error(fs_info, ret,
4369 : "Couldn't find tree log root.");
4370 0 : goto error;
4371 : }
4372 0 : if (ret > 0) {
4373 0 : if (path->slots[0] == 0)
4374 : break;
4375 0 : path->slots[0]--;
4376 : }
4377 0 : btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4378 : path->slots[0]);
4379 0 : btrfs_release_path(path);
4380 0 : if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4381 : break;
4382 :
4383 0 : log = btrfs_read_fs_root(log_root_tree, &found_key);
4384 0 : if (IS_ERR(log)) {
4385 0 : ret = PTR_ERR(log);
4386 0 : btrfs_error(fs_info, ret,
4387 : "Couldn't read tree log root.");
4388 0 : goto error;
4389 : }
4390 :
4391 0 : tmp_key.objectid = found_key.offset;
4392 0 : tmp_key.type = BTRFS_ROOT_ITEM_KEY;
4393 0 : tmp_key.offset = (u64)-1;
4394 :
4395 0 : wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
4396 0 : if (IS_ERR(wc.replay_dest)) {
4397 0 : ret = PTR_ERR(wc.replay_dest);
4398 0 : free_extent_buffer(log->node);
4399 0 : free_extent_buffer(log->commit_root);
4400 0 : kfree(log);
4401 0 : btrfs_error(fs_info, ret, "Couldn't read target root "
4402 : "for tree log recovery.");
4403 0 : goto error;
4404 : }
4405 :
4406 0 : wc.replay_dest->log_root = log;
4407 0 : btrfs_record_root_in_trans(trans, wc.replay_dest);
4408 0 : ret = walk_log_tree(trans, log, &wc);
4409 :
4410 0 : if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
4411 0 : ret = fixup_inode_link_counts(trans, wc.replay_dest,
4412 : path);
4413 : }
4414 :
4415 0 : key.offset = found_key.offset - 1;
4416 0 : wc.replay_dest->log_root = NULL;
4417 0 : free_extent_buffer(log->node);
4418 0 : free_extent_buffer(log->commit_root);
4419 0 : kfree(log);
4420 :
4421 0 : if (ret)
4422 : goto error;
4423 :
4424 0 : if (found_key.offset == 0)
4425 : break;
4426 : }
4427 0 : btrfs_release_path(path);
4428 :
4429 : /* step one is to pin it all, step two is to replay just inodes */
4430 0 : if (wc.pin) {
4431 0 : wc.pin = 0;
4432 0 : wc.process_func = replay_one_buffer;
4433 0 : wc.stage = LOG_WALK_REPLAY_INODES;
4434 0 : goto again;
4435 : }
4436 : /* step three is to replay everything */
4437 0 : if (wc.stage < LOG_WALK_REPLAY_ALL) {
4438 0 : wc.stage++;
4439 0 : goto again;
4440 : }
4441 :
4442 0 : btrfs_free_path(path);
4443 :
4444 : /* step 4: commit the transaction, which also unpins the blocks */
4445 0 : ret = btrfs_commit_transaction(trans, fs_info->tree_root);
4446 0 : if (ret)
4447 : return ret;
4448 :
4449 0 : free_extent_buffer(log_root_tree->node);
4450 0 : log_root_tree->log_root = NULL;
4451 0 : fs_info->log_root_recovering = 0;
4452 0 : kfree(log_root_tree);
4453 :
4454 0 : return 0;
4455 : error:
4456 0 : if (wc.trans)
4457 0 : btrfs_end_transaction(wc.trans, fs_info->tree_root);
4458 0 : btrfs_free_path(path);
4459 0 : return ret;
4460 : }
4461 :
4462 : /*
4463 : * there are some corner cases where we want to force a full
4464 : * commit instead of allowing a directory to be logged.
4465 : *
4466 : * They revolve around files there were unlinked from the directory, and
4467 : * this function updates the parent directory so that a full commit is
4468 : * properly done if it is fsync'd later after the unlinks are done.
4469 : */
4470 10742 : void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4471 : struct inode *dir, struct inode *inode,
4472 : int for_rename)
4473 : {
4474 : /*
4475 : * when we're logging a file, if it hasn't been renamed
4476 : * or unlinked, and its inode is fully committed on disk,
4477 : * we don't have to worry about walking up the directory chain
4478 : * to log its parents.
4479 : *
4480 : * So, we use the last_unlink_trans field to put this transid
4481 : * into the file. When the file is logged we check it and
4482 : * don't log the parents if the file is fully on disk.
4483 : */
4484 10742 : if (S_ISREG(inode->i_mode))
4485 6303 : BTRFS_I(inode)->last_unlink_trans = trans->transid;
4486 :
4487 : /*
4488 : * if this directory was already logged any new
4489 : * names for this file/dir will get recorded
4490 : */
4491 10742 : smp_mb();
4492 10742 : if (BTRFS_I(dir)->logged_trans == trans->transid)
4493 : return;
4494 :
4495 : /*
4496 : * if the inode we're about to unlink was logged,
4497 : * the log will be properly updated for any new names
4498 : */
4499 10617 : if (BTRFS_I(inode)->logged_trans == trans->transid)
4500 : return;
4501 :
4502 : /*
4503 : * when renaming files across directories, if the directory
4504 : * there we're unlinking from gets fsync'd later on, there's
4505 : * no way to find the destination directory later and fsync it
4506 : * properly. So, we have to be conservative and force commits
4507 : * so the new name gets discovered.
4508 : */
4509 10607 : if (for_rename)
4510 : goto record;
4511 :
4512 : /* we can safely do the unlink without any special recording */
4513 : return;
4514 :
4515 : record:
4516 2042 : BTRFS_I(dir)->last_unlink_trans = trans->transid;
4517 : }
4518 :
4519 : /*
4520 : * Call this after adding a new name for a file and it will properly
4521 : * update the log to reflect the new name.
4522 : *
4523 : * It will return zero if all goes well, and it will return 1 if a
4524 : * full transaction commit is required.
4525 : */
4526 5884 : int btrfs_log_new_name(struct btrfs_trans_handle *trans,
4527 : struct inode *inode, struct inode *old_dir,
4528 : struct dentry *parent)
4529 : {
4530 5884 : struct btrfs_root * root = BTRFS_I(inode)->root;
4531 :
4532 : /*
4533 : * this will force the logging code to walk the dentry chain
4534 : * up for the file
4535 : */
4536 5884 : if (S_ISREG(inode->i_mode))
4537 3538 : BTRFS_I(inode)->last_unlink_trans = trans->transid;
4538 :
4539 : /*
4540 : * if this inode hasn't been logged and directory we're renaming it
4541 : * from hasn't been logged, we don't need to log it
4542 : */
4543 11768 : if (BTRFS_I(inode)->logged_trans <=
4544 11723 : root->fs_info->last_trans_committed &&
4545 2280 : (!old_dir || BTRFS_I(old_dir)->logged_trans <=
4546 : root->fs_info->last_trans_committed))
4547 : return 0;
4548 :
4549 113 : return btrfs_log_inode_parent(trans, root, inode, parent, 0,
4550 : LLONG_MAX, 1, NULL);
4551 : }
4552 :
|