Line data Source code
1 : #ifndef _LINUX_MM_H
2 : #define _LINUX_MM_H
3 :
4 : #include <linux/errno.h>
5 :
6 : #ifdef __KERNEL__
7 :
8 : #include <linux/mmdebug.h>
9 : #include <linux/gfp.h>
10 : #include <linux/bug.h>
11 : #include <linux/list.h>
12 : #include <linux/mmzone.h>
13 : #include <linux/rbtree.h>
14 : #include <linux/atomic.h>
15 : #include <linux/debug_locks.h>
16 : #include <linux/mm_types.h>
17 : #include <linux/range.h>
18 : #include <linux/pfn.h>
19 : #include <linux/bit_spinlock.h>
20 : #include <linux/shrinker.h>
21 :
22 : struct mempolicy;
23 : struct anon_vma;
24 : struct anon_vma_chain;
25 : struct file_ra_state;
26 : struct user_struct;
27 : struct writeback_control;
28 :
29 : #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
30 : extern unsigned long max_mapnr;
31 :
32 : static inline void set_max_mapnr(unsigned long limit)
33 : {
34 : max_mapnr = limit;
35 : }
36 : #else
37 : static inline void set_max_mapnr(unsigned long limit) { }
38 : #endif
39 :
40 : extern unsigned long totalram_pages;
41 : extern void * high_memory;
42 : extern int page_cluster;
43 :
44 : #ifdef CONFIG_SYSCTL
45 : extern int sysctl_legacy_va_layout;
46 : #else
47 : #define sysctl_legacy_va_layout 0
48 : #endif
49 :
50 : #include <asm/page.h>
51 : #include <asm/pgtable.h>
52 : #include <asm/processor.h>
53 :
54 : #ifndef __pa_symbol
55 : #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
56 : #endif
57 :
58 : extern unsigned long sysctl_user_reserve_kbytes;
59 : extern unsigned long sysctl_admin_reserve_kbytes;
60 :
61 : extern int sysctl_overcommit_memory;
62 : extern int sysctl_overcommit_ratio;
63 : extern unsigned long sysctl_overcommit_kbytes;
64 :
65 : extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
66 : size_t *, loff_t *);
67 : extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
68 : size_t *, loff_t *);
69 :
70 : #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
71 :
72 : /* to align the pointer to the (next) page boundary */
73 : #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
74 :
75 : /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
76 : #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
77 :
78 : /*
79 : * Linux kernel virtual memory manager primitives.
80 : * The idea being to have a "virtual" mm in the same way
81 : * we have a virtual fs - giving a cleaner interface to the
82 : * mm details, and allowing different kinds of memory mappings
83 : * (from shared memory to executable loading to arbitrary
84 : * mmap() functions).
85 : */
86 :
87 : extern struct kmem_cache *vm_area_cachep;
88 :
89 : #ifndef CONFIG_MMU
90 : extern struct rb_root nommu_region_tree;
91 : extern struct rw_semaphore nommu_region_sem;
92 :
93 : extern unsigned int kobjsize(const void *objp);
94 : #endif
95 :
96 : /*
97 : * vm_flags in vm_area_struct, see mm_types.h.
98 : */
99 : #define VM_NONE 0x00000000
100 :
101 : #define VM_READ 0x00000001 /* currently active flags */
102 : #define VM_WRITE 0x00000002
103 : #define VM_EXEC 0x00000004
104 : #define VM_SHARED 0x00000008
105 :
106 : /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
107 : #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
108 : #define VM_MAYWRITE 0x00000020
109 : #define VM_MAYEXEC 0x00000040
110 : #define VM_MAYSHARE 0x00000080
111 :
112 : #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
113 : #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
114 : #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
115 :
116 : #define VM_LOCKED 0x00002000
117 : #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
118 :
119 : /* Used by sys_madvise() */
120 : #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
121 : #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
122 :
123 : #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
124 : #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
125 : #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
126 : #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
127 : #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
128 : #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
129 : #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
130 : #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
131 :
132 : #ifdef CONFIG_MEM_SOFT_DIRTY
133 : # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
134 : #else
135 : # define VM_SOFTDIRTY 0
136 : #endif
137 :
138 : #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
139 : #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
140 : #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
141 : #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
142 :
143 : #if defined(CONFIG_X86)
144 : # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
145 : #elif defined(CONFIG_PPC)
146 : # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
147 : #elif defined(CONFIG_PARISC)
148 : # define VM_GROWSUP VM_ARCH_1
149 : #elif defined(CONFIG_METAG)
150 : # define VM_GROWSUP VM_ARCH_1
151 : #elif defined(CONFIG_IA64)
152 : # define VM_GROWSUP VM_ARCH_1
153 : #elif !defined(CONFIG_MMU)
154 : # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
155 : #endif
156 :
157 : #ifndef VM_GROWSUP
158 : # define VM_GROWSUP VM_NONE
159 : #endif
160 :
161 : /* Bits set in the VMA until the stack is in its final location */
162 : #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
163 :
164 : #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
165 : #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
166 : #endif
167 :
168 : #ifdef CONFIG_STACK_GROWSUP
169 : #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
170 : #else
171 : #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
172 : #endif
173 :
174 : /*
175 : * Special vmas that are non-mergable, non-mlock()able.
176 : * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
177 : */
178 : #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
179 :
180 : /* This mask defines which mm->def_flags a process can inherit its parent */
181 : #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
182 :
183 : /*
184 : * mapping from the currently active vm_flags protection bits (the
185 : * low four bits) to a page protection mask..
186 : */
187 : extern pgprot_t protection_map[16];
188 :
189 : #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
190 : #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
191 : #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
192 : #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
193 : #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
194 : #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
195 : #define FAULT_FLAG_TRIED 0x40 /* second try */
196 : #define FAULT_FLAG_USER 0x80 /* The fault originated in userspace */
197 :
198 : /*
199 : * vm_fault is filled by the the pagefault handler and passed to the vma's
200 : * ->fault function. The vma's ->fault is responsible for returning a bitmask
201 : * of VM_FAULT_xxx flags that give details about how the fault was handled.
202 : *
203 : * pgoff should be used in favour of virtual_address, if possible. If pgoff
204 : * is used, one may implement ->remap_pages to get nonlinear mapping support.
205 : */
206 : struct vm_fault {
207 : unsigned int flags; /* FAULT_FLAG_xxx flags */
208 : pgoff_t pgoff; /* Logical page offset based on vma */
209 : void __user *virtual_address; /* Faulting virtual address */
210 :
211 : struct page *page; /* ->fault handlers should return a
212 : * page here, unless VM_FAULT_NOPAGE
213 : * is set (which is also implied by
214 : * VM_FAULT_ERROR).
215 : */
216 : /* for ->map_pages() only */
217 : pgoff_t max_pgoff; /* map pages for offset from pgoff till
218 : * max_pgoff inclusive */
219 : pte_t *pte; /* pte entry associated with ->pgoff */
220 : };
221 :
222 : /*
223 : * These are the virtual MM functions - opening of an area, closing and
224 : * unmapping it (needed to keep files on disk up-to-date etc), pointer
225 : * to the functions called when a no-page or a wp-page exception occurs.
226 : */
227 : struct vm_operations_struct {
228 : void (*open)(struct vm_area_struct * area);
229 : void (*close)(struct vm_area_struct * area);
230 : int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
231 : void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
232 :
233 : /* notification that a previously read-only page is about to become
234 : * writable, if an error is returned it will cause a SIGBUS */
235 : int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
236 :
237 : /* called by access_process_vm when get_user_pages() fails, typically
238 : * for use by special VMAs that can switch between memory and hardware
239 : */
240 : int (*access)(struct vm_area_struct *vma, unsigned long addr,
241 : void *buf, int len, int write);
242 :
243 : /* Called by the /proc/PID/maps code to ask the vma whether it
244 : * has a special name. Returning non-NULL will also cause this
245 : * vma to be dumped unconditionally. */
246 : const char *(*name)(struct vm_area_struct *vma);
247 :
248 : #ifdef CONFIG_NUMA
249 : /*
250 : * set_policy() op must add a reference to any non-NULL @new mempolicy
251 : * to hold the policy upon return. Caller should pass NULL @new to
252 : * remove a policy and fall back to surrounding context--i.e. do not
253 : * install a MPOL_DEFAULT policy, nor the task or system default
254 : * mempolicy.
255 : */
256 : int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
257 :
258 : /*
259 : * get_policy() op must add reference [mpol_get()] to any policy at
260 : * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
261 : * in mm/mempolicy.c will do this automatically.
262 : * get_policy() must NOT add a ref if the policy at (vma,addr) is not
263 : * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
264 : * If no [shared/vma] mempolicy exists at the addr, get_policy() op
265 : * must return NULL--i.e., do not "fallback" to task or system default
266 : * policy.
267 : */
268 : struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
269 : unsigned long addr);
270 : int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
271 : const nodemask_t *to, unsigned long flags);
272 : #endif
273 : /* called by sys_remap_file_pages() to populate non-linear mapping */
274 : int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
275 : unsigned long size, pgoff_t pgoff);
276 : };
277 :
278 : struct mmu_gather;
279 : struct inode;
280 :
281 : #define page_private(page) ((page)->private)
282 : #define set_page_private(page, v) ((page)->private = (v))
283 :
284 : /* It's valid only if the page is free path or free_list */
285 : static inline void set_freepage_migratetype(struct page *page, int migratetype)
286 : {
287 : page->index = migratetype;
288 : }
289 :
290 : /* It's valid only if the page is free path or free_list */
291 : static inline int get_freepage_migratetype(struct page *page)
292 : {
293 : return page->index;
294 : }
295 :
296 : /*
297 : * FIXME: take this include out, include page-flags.h in
298 : * files which need it (119 of them)
299 : */
300 : #include <linux/page-flags.h>
301 : #include <linux/huge_mm.h>
302 :
303 : /*
304 : * Methods to modify the page usage count.
305 : *
306 : * What counts for a page usage:
307 : * - cache mapping (page->mapping)
308 : * - private data (page->private)
309 : * - page mapped in a task's page tables, each mapping
310 : * is counted separately
311 : *
312 : * Also, many kernel routines increase the page count before a critical
313 : * routine so they can be sure the page doesn't go away from under them.
314 : */
315 :
316 : /*
317 : * Drop a ref, return true if the refcount fell to zero (the page has no users)
318 : */
319 : static inline int put_page_testzero(struct page *page)
320 : {
321 : VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
322 : return atomic_dec_and_test(&page->_count);
323 : }
324 :
325 : /*
326 : * Try to grab a ref unless the page has a refcount of zero, return false if
327 : * that is the case.
328 : * This can be called when MMU is off so it must not access
329 : * any of the virtual mappings.
330 : */
331 34 : static inline int get_page_unless_zero(struct page *page)
332 : {
333 34 : return atomic_inc_not_zero(&page->_count);
334 : }
335 :
336 : /*
337 : * Try to drop a ref unless the page has a refcount of one, return false if
338 : * that is the case.
339 : * This is to make sure that the refcount won't become zero after this drop.
340 : * This can be called when MMU is off so it must not access
341 : * any of the virtual mappings.
342 : */
343 : static inline int put_page_unless_one(struct page *page)
344 : {
345 : return atomic_add_unless(&page->_count, -1, 1);
346 : }
347 :
348 : extern int page_is_ram(unsigned long pfn);
349 :
350 : /* Support for virtually mapped pages */
351 : struct page *vmalloc_to_page(const void *addr);
352 : unsigned long vmalloc_to_pfn(const void *addr);
353 :
354 : /*
355 : * Determine if an address is within the vmalloc range
356 : *
357 : * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
358 : * is no special casing required.
359 : */
360 : static inline int is_vmalloc_addr(const void *x)
361 : {
362 : #ifdef CONFIG_MMU
363 221 : unsigned long addr = (unsigned long)x;
364 :
365 221 : return addr >= VMALLOC_START && addr < VMALLOC_END;
366 : #else
367 : return 0;
368 : #endif
369 : }
370 : #ifdef CONFIG_MMU
371 : extern int is_vmalloc_or_module_addr(const void *x);
372 : #else
373 : static inline int is_vmalloc_or_module_addr(const void *x)
374 : {
375 : return 0;
376 : }
377 : #endif
378 :
379 : extern void kvfree(const void *addr);
380 :
381 : static inline void compound_lock(struct page *page)
382 : {
383 : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
384 : VM_BUG_ON_PAGE(PageSlab(page), page);
385 : bit_spin_lock(PG_compound_lock, &page->flags);
386 : #endif
387 : }
388 :
389 : static inline void compound_unlock(struct page *page)
390 : {
391 : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
392 : VM_BUG_ON_PAGE(PageSlab(page), page);
393 : bit_spin_unlock(PG_compound_lock, &page->flags);
394 : #endif
395 : }
396 :
397 : static inline unsigned long compound_lock_irqsave(struct page *page)
398 : {
399 : unsigned long uninitialized_var(flags);
400 : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
401 : local_irq_save(flags);
402 : compound_lock(page);
403 : #endif
404 : return flags;
405 : }
406 :
407 : static inline void compound_unlock_irqrestore(struct page *page,
408 : unsigned long flags)
409 : {
410 : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
411 : compound_unlock(page);
412 : local_irq_restore(flags);
413 : #endif
414 : }
415 :
416 : static inline struct page *compound_head_by_tail(struct page *tail)
417 : {
418 : struct page *head = tail->first_page;
419 :
420 : /*
421 : * page->first_page may be a dangling pointer to an old
422 : * compound page, so recheck that it is still a tail
423 : * page before returning.
424 : */
425 : smp_rmb();
426 : if (likely(PageTail(tail)))
427 : return head;
428 : return tail;
429 : }
430 :
431 : static inline struct page *compound_head(struct page *page)
432 : {
433 : if (unlikely(PageTail(page)))
434 : return compound_head_by_tail(page);
435 : return page;
436 : }
437 :
438 : /*
439 : * The atomic page->_mapcount, starts from -1: so that transitions
440 : * both from it and to it can be tracked, using atomic_inc_and_test
441 : * and atomic_add_negative(-1).
442 : */
443 : static inline void page_mapcount_reset(struct page *page)
444 : {
445 : atomic_set(&(page)->_mapcount, -1);
446 : }
447 :
448 : static inline int page_mapcount(struct page *page)
449 : {
450 : return atomic_read(&(page)->_mapcount) + 1;
451 : }
452 :
453 : static inline int page_count(struct page *page)
454 : {
455 : return atomic_read(&compound_head(page)->_count);
456 : }
457 :
458 : #ifdef CONFIG_HUGETLB_PAGE
459 : extern int PageHeadHuge(struct page *page_head);
460 : #else /* CONFIG_HUGETLB_PAGE */
461 : static inline int PageHeadHuge(struct page *page_head)
462 : {
463 : return 0;
464 : }
465 : #endif /* CONFIG_HUGETLB_PAGE */
466 :
467 : static inline bool __compound_tail_refcounted(struct page *page)
468 : {
469 : return !PageSlab(page) && !PageHeadHuge(page);
470 : }
471 :
472 : /*
473 : * This takes a head page as parameter and tells if the
474 : * tail page reference counting can be skipped.
475 : *
476 : * For this to be safe, PageSlab and PageHeadHuge must remain true on
477 : * any given page where they return true here, until all tail pins
478 : * have been released.
479 : */
480 : static inline bool compound_tail_refcounted(struct page *page)
481 : {
482 : VM_BUG_ON_PAGE(!PageHead(page), page);
483 : return __compound_tail_refcounted(page);
484 : }
485 :
486 : static inline void get_huge_page_tail(struct page *page)
487 : {
488 : /*
489 : * __split_huge_page_refcount() cannot run from under us.
490 : */
491 : VM_BUG_ON_PAGE(!PageTail(page), page);
492 : VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
493 : VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
494 : if (compound_tail_refcounted(page->first_page))
495 : atomic_inc(&page->_mapcount);
496 : }
497 :
498 : extern bool __get_page_tail(struct page *page);
499 :
500 1949891 : static inline void get_page(struct page *page)
501 : {
502 1949891 : if (unlikely(PageTail(page)))
503 0 : if (likely(__get_page_tail(page)))
504 1949897 : return;
505 : /*
506 : * Getting a normal page or the head of a compound page
507 : * requires to already have an elevated page->_count.
508 : */
509 1949890 : VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
510 1949890 : atomic_inc(&page->_count);
511 : }
512 :
513 : static inline struct page *virt_to_head_page(const void *x)
514 : {
515 : struct page *page = virt_to_page(x);
516 : return compound_head(page);
517 : }
518 :
519 : /*
520 : * Setup the page count before being freed into the page allocator for
521 : * the first time (boot or memory hotplug)
522 : */
523 : static inline void init_page_count(struct page *page)
524 : {
525 : atomic_set(&page->_count, 1);
526 : }
527 :
528 : /*
529 : * PageBuddy() indicate that the page is free and in the buddy system
530 : * (see mm/page_alloc.c).
531 : *
532 : * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
533 : * -2 so that an underflow of the page_mapcount() won't be mistaken
534 : * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
535 : * efficiently by most CPU architectures.
536 : */
537 : #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
538 :
539 : static inline int PageBuddy(struct page *page)
540 : {
541 : return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
542 : }
543 :
544 : static inline void __SetPageBuddy(struct page *page)
545 : {
546 : VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
547 : atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
548 : }
549 :
550 : static inline void __ClearPageBuddy(struct page *page)
551 : {
552 : VM_BUG_ON_PAGE(!PageBuddy(page), page);
553 : atomic_set(&page->_mapcount, -1);
554 : }
555 :
556 : void put_page(struct page *page);
557 : void put_pages_list(struct list_head *pages);
558 :
559 : void split_page(struct page *page, unsigned int order);
560 : int split_free_page(struct page *page);
561 :
562 : /*
563 : * Compound pages have a destructor function. Provide a
564 : * prototype for that function and accessor functions.
565 : * These are _only_ valid on the head of a PG_compound page.
566 : */
567 : typedef void compound_page_dtor(struct page *);
568 :
569 : static inline void set_compound_page_dtor(struct page *page,
570 : compound_page_dtor *dtor)
571 : {
572 : page[1].lru.next = (void *)dtor;
573 : }
574 :
575 : static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
576 : {
577 : return (compound_page_dtor *)page[1].lru.next;
578 : }
579 :
580 : static inline int compound_order(struct page *page)
581 : {
582 : if (!PageHead(page))
583 : return 0;
584 : return (unsigned long)page[1].lru.prev;
585 : }
586 :
587 : static inline void set_compound_order(struct page *page, unsigned long order)
588 : {
589 : page[1].lru.prev = (void *)order;
590 : }
591 :
592 : #ifdef CONFIG_MMU
593 : /*
594 : * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
595 : * servicing faults for write access. In the normal case, do always want
596 : * pte_mkwrite. But get_user_pages can cause write faults for mappings
597 : * that do not have writing enabled, when used by access_process_vm.
598 : */
599 : static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
600 : {
601 : if (likely(vma->vm_flags & VM_WRITE))
602 : pte = pte_mkwrite(pte);
603 : return pte;
604 : }
605 :
606 : void do_set_pte(struct vm_area_struct *vma, unsigned long address,
607 : struct page *page, pte_t *pte, bool write, bool anon);
608 : #endif
609 :
610 : /*
611 : * Multiple processes may "see" the same page. E.g. for untouched
612 : * mappings of /dev/null, all processes see the same page full of
613 : * zeroes, and text pages of executables and shared libraries have
614 : * only one copy in memory, at most, normally.
615 : *
616 : * For the non-reserved pages, page_count(page) denotes a reference count.
617 : * page_count() == 0 means the page is free. page->lru is then used for
618 : * freelist management in the buddy allocator.
619 : * page_count() > 0 means the page has been allocated.
620 : *
621 : * Pages are allocated by the slab allocator in order to provide memory
622 : * to kmalloc and kmem_cache_alloc. In this case, the management of the
623 : * page, and the fields in 'struct page' are the responsibility of mm/slab.c
624 : * unless a particular usage is carefully commented. (the responsibility of
625 : * freeing the kmalloc memory is the caller's, of course).
626 : *
627 : * A page may be used by anyone else who does a __get_free_page().
628 : * In this case, page_count still tracks the references, and should only
629 : * be used through the normal accessor functions. The top bits of page->flags
630 : * and page->virtual store page management information, but all other fields
631 : * are unused and could be used privately, carefully. The management of this
632 : * page is the responsibility of the one who allocated it, and those who have
633 : * subsequently been given references to it.
634 : *
635 : * The other pages (we may call them "pagecache pages") are completely
636 : * managed by the Linux memory manager: I/O, buffers, swapping etc.
637 : * The following discussion applies only to them.
638 : *
639 : * A pagecache page contains an opaque `private' member, which belongs to the
640 : * page's address_space. Usually, this is the address of a circular list of
641 : * the page's disk buffers. PG_private must be set to tell the VM to call
642 : * into the filesystem to release these pages.
643 : *
644 : * A page may belong to an inode's memory mapping. In this case, page->mapping
645 : * is the pointer to the inode, and page->index is the file offset of the page,
646 : * in units of PAGE_CACHE_SIZE.
647 : *
648 : * If pagecache pages are not associated with an inode, they are said to be
649 : * anonymous pages. These may become associated with the swapcache, and in that
650 : * case PG_swapcache is set, and page->private is an offset into the swapcache.
651 : *
652 : * In either case (swapcache or inode backed), the pagecache itself holds one
653 : * reference to the page. Setting PG_private should also increment the
654 : * refcount. The each user mapping also has a reference to the page.
655 : *
656 : * The pagecache pages are stored in a per-mapping radix tree, which is
657 : * rooted at mapping->page_tree, and indexed by offset.
658 : * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
659 : * lists, we instead now tag pages as dirty/writeback in the radix tree.
660 : *
661 : * All pagecache pages may be subject to I/O:
662 : * - inode pages may need to be read from disk,
663 : * - inode pages which have been modified and are MAP_SHARED may need
664 : * to be written back to the inode on disk,
665 : * - anonymous pages (including MAP_PRIVATE file mappings) which have been
666 : * modified may need to be swapped out to swap space and (later) to be read
667 : * back into memory.
668 : */
669 :
670 : /*
671 : * The zone field is never updated after free_area_init_core()
672 : * sets it, so none of the operations on it need to be atomic.
673 : */
674 :
675 : /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
676 : #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
677 : #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
678 : #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
679 : #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
680 :
681 : /*
682 : * Define the bit shifts to access each section. For non-existent
683 : * sections we define the shift as 0; that plus a 0 mask ensures
684 : * the compiler will optimise away reference to them.
685 : */
686 : #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
687 : #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
688 : #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
689 : #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
690 :
691 : /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
692 : #ifdef NODE_NOT_IN_PAGE_FLAGS
693 : #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
694 : #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
695 : SECTIONS_PGOFF : ZONES_PGOFF)
696 : #else
697 : #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
698 : #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
699 : NODES_PGOFF : ZONES_PGOFF)
700 : #endif
701 :
702 : #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
703 :
704 : #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
705 : #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
706 : #endif
707 :
708 : #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
709 : #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
710 : #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
711 : #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
712 : #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
713 :
714 : static inline enum zone_type page_zonenum(const struct page *page)
715 : {
716 : return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
717 : }
718 :
719 : #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
720 : #define SECTION_IN_PAGE_FLAGS
721 : #endif
722 :
723 : /*
724 : * The identification function is mainly used by the buddy allocator for
725 : * determining if two pages could be buddies. We are not really identifying
726 : * the zone since we could be using the section number id if we do not have
727 : * node id available in page flags.
728 : * We only guarantee that it will return the same value for two combinable
729 : * pages in a zone.
730 : */
731 : static inline int page_zone_id(struct page *page)
732 : {
733 : return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
734 : }
735 :
736 : static inline int zone_to_nid(struct zone *zone)
737 : {
738 : #ifdef CONFIG_NUMA
739 : return zone->node;
740 : #else
741 : return 0;
742 : #endif
743 : }
744 :
745 : #ifdef NODE_NOT_IN_PAGE_FLAGS
746 : extern int page_to_nid(const struct page *page);
747 : #else
748 : static inline int page_to_nid(const struct page *page)
749 : {
750 : return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
751 : }
752 : #endif
753 :
754 : #ifdef CONFIG_NUMA_BALANCING
755 : static inline int cpu_pid_to_cpupid(int cpu, int pid)
756 : {
757 : return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
758 : }
759 :
760 : static inline int cpupid_to_pid(int cpupid)
761 : {
762 : return cpupid & LAST__PID_MASK;
763 : }
764 :
765 : static inline int cpupid_to_cpu(int cpupid)
766 : {
767 : return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
768 : }
769 :
770 : static inline int cpupid_to_nid(int cpupid)
771 : {
772 : return cpu_to_node(cpupid_to_cpu(cpupid));
773 : }
774 :
775 : static inline bool cpupid_pid_unset(int cpupid)
776 : {
777 : return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
778 : }
779 :
780 : static inline bool cpupid_cpu_unset(int cpupid)
781 : {
782 : return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
783 : }
784 :
785 : static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
786 : {
787 : return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
788 : }
789 :
790 : #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
791 : #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
792 : static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
793 : {
794 : return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
795 : }
796 :
797 : static inline int page_cpupid_last(struct page *page)
798 : {
799 : return page->_last_cpupid;
800 : }
801 : static inline void page_cpupid_reset_last(struct page *page)
802 : {
803 : page->_last_cpupid = -1 & LAST_CPUPID_MASK;
804 : }
805 : #else
806 : static inline int page_cpupid_last(struct page *page)
807 : {
808 : return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
809 : }
810 :
811 : extern int page_cpupid_xchg_last(struct page *page, int cpupid);
812 :
813 : static inline void page_cpupid_reset_last(struct page *page)
814 : {
815 : int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
816 :
817 : page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
818 : page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
819 : }
820 : #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
821 : #else /* !CONFIG_NUMA_BALANCING */
822 : static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
823 : {
824 : return page_to_nid(page); /* XXX */
825 : }
826 :
827 : static inline int page_cpupid_last(struct page *page)
828 : {
829 : return page_to_nid(page); /* XXX */
830 : }
831 :
832 : static inline int cpupid_to_nid(int cpupid)
833 : {
834 : return -1;
835 : }
836 :
837 : static inline int cpupid_to_pid(int cpupid)
838 : {
839 : return -1;
840 : }
841 :
842 : static inline int cpupid_to_cpu(int cpupid)
843 : {
844 : return -1;
845 : }
846 :
847 : static inline int cpu_pid_to_cpupid(int nid, int pid)
848 : {
849 : return -1;
850 : }
851 :
852 : static inline bool cpupid_pid_unset(int cpupid)
853 : {
854 : return 1;
855 : }
856 :
857 : static inline void page_cpupid_reset_last(struct page *page)
858 : {
859 : }
860 :
861 : static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
862 : {
863 : return false;
864 : }
865 : #endif /* CONFIG_NUMA_BALANCING */
866 :
867 : static inline struct zone *page_zone(const struct page *page)
868 : {
869 : return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
870 : }
871 :
872 : #ifdef SECTION_IN_PAGE_FLAGS
873 : static inline void set_page_section(struct page *page, unsigned long section)
874 : {
875 : page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
876 : page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
877 : }
878 :
879 : static inline unsigned long page_to_section(const struct page *page)
880 : {
881 : return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
882 : }
883 : #endif
884 :
885 : static inline void set_page_zone(struct page *page, enum zone_type zone)
886 : {
887 : page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
888 : page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
889 : }
890 :
891 : static inline void set_page_node(struct page *page, unsigned long node)
892 : {
893 : page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
894 : page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
895 : }
896 :
897 : static inline void set_page_links(struct page *page, enum zone_type zone,
898 : unsigned long node, unsigned long pfn)
899 : {
900 : set_page_zone(page, zone);
901 : set_page_node(page, node);
902 : #ifdef SECTION_IN_PAGE_FLAGS
903 : set_page_section(page, pfn_to_section_nr(pfn));
904 : #endif
905 : }
906 :
907 : /*
908 : * Some inline functions in vmstat.h depend on page_zone()
909 : */
910 : #include <linux/vmstat.h>
911 :
912 : static __always_inline void *lowmem_page_address(const struct page *page)
913 : {
914 98214134 : return __va(PFN_PHYS(page_to_pfn(page)));
915 : }
916 :
917 : #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
918 : #define HASHED_PAGE_VIRTUAL
919 : #endif
920 :
921 : #if defined(WANT_PAGE_VIRTUAL)
922 : static inline void *page_address(const struct page *page)
923 : {
924 : return page->virtual;
925 : }
926 : static inline void set_page_address(struct page *page, void *address)
927 : {
928 : page->virtual = address;
929 : }
930 : #define page_address_init() do { } while(0)
931 : #endif
932 :
933 : #if defined(HASHED_PAGE_VIRTUAL)
934 : void *page_address(const struct page *page);
935 : void set_page_address(struct page *page, void *virtual);
936 : void page_address_init(void);
937 : #endif
938 :
939 : #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
940 : #define page_address(page) lowmem_page_address(page)
941 : #define set_page_address(page, address) do { } while(0)
942 : #define page_address_init() do { } while(0)
943 : #endif
944 :
945 : /*
946 : * On an anonymous page mapped into a user virtual memory area,
947 : * page->mapping points to its anon_vma, not to a struct address_space;
948 : * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
949 : *
950 : * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
951 : * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
952 : * and then page->mapping points, not to an anon_vma, but to a private
953 : * structure which KSM associates with that merged page. See ksm.h.
954 : *
955 : * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
956 : *
957 : * Please note that, confusingly, "page_mapping" refers to the inode
958 : * address_space which maps the page from disk; whereas "page_mapped"
959 : * refers to user virtual address space into which the page is mapped.
960 : */
961 : #define PAGE_MAPPING_ANON 1
962 : #define PAGE_MAPPING_KSM 2
963 : #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
964 :
965 : extern struct address_space *page_mapping(struct page *page);
966 :
967 : /* Neutral page->mapping pointer to address_space or anon_vma or other */
968 : static inline void *page_rmapping(struct page *page)
969 : {
970 : return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
971 : }
972 :
973 : extern struct address_space *__page_file_mapping(struct page *);
974 :
975 : static inline
976 : struct address_space *page_file_mapping(struct page *page)
977 : {
978 : if (unlikely(PageSwapCache(page)))
979 : return __page_file_mapping(page);
980 :
981 : return page->mapping;
982 : }
983 :
984 : static inline int PageAnon(struct page *page)
985 : {
986 : return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
987 : }
988 :
989 : /*
990 : * Return the pagecache index of the passed page. Regular pagecache pages
991 : * use ->index whereas swapcache pages use ->private
992 : */
993 : static inline pgoff_t page_index(struct page *page)
994 : {
995 4706 : if (unlikely(PageSwapCache(page)))
996 0 : return page_private(page);
997 4706 : return page->index;
998 : }
999 :
1000 : extern pgoff_t __page_file_index(struct page *page);
1001 :
1002 : /*
1003 : * Return the file index of the page. Regular pagecache pages use ->index
1004 : * whereas swapcache pages use swp_offset(->private)
1005 : */
1006 : static inline pgoff_t page_file_index(struct page *page)
1007 : {
1008 : if (unlikely(PageSwapCache(page)))
1009 : return __page_file_index(page);
1010 :
1011 : return page->index;
1012 : }
1013 :
1014 : /*
1015 : * Return true if this page is mapped into pagetables.
1016 : */
1017 : static inline int page_mapped(struct page *page)
1018 : {
1019 : return atomic_read(&(page)->_mapcount) >= 0;
1020 : }
1021 :
1022 : /*
1023 : * Different kinds of faults, as returned by handle_mm_fault().
1024 : * Used to decide whether a process gets delivered SIGBUS or
1025 : * just gets major/minor fault counters bumped up.
1026 : */
1027 :
1028 : #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
1029 :
1030 : #define VM_FAULT_OOM 0x0001
1031 : #define VM_FAULT_SIGBUS 0x0002
1032 : #define VM_FAULT_MAJOR 0x0004
1033 : #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1034 : #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1035 : #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1036 :
1037 : #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1038 : #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1039 : #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1040 : #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1041 :
1042 : #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1043 :
1044 : #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
1045 : VM_FAULT_FALLBACK | VM_FAULT_HWPOISON_LARGE)
1046 :
1047 : /* Encode hstate index for a hwpoisoned large page */
1048 : #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1049 : #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1050 :
1051 : /*
1052 : * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1053 : */
1054 : extern void pagefault_out_of_memory(void);
1055 :
1056 : #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1057 :
1058 : /*
1059 : * Flags passed to show_mem() and show_free_areas() to suppress output in
1060 : * various contexts.
1061 : */
1062 : #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1063 :
1064 : extern void show_free_areas(unsigned int flags);
1065 : extern bool skip_free_areas_node(unsigned int flags, int nid);
1066 :
1067 : int shmem_zero_setup(struct vm_area_struct *);
1068 : #ifdef CONFIG_SHMEM
1069 : bool shmem_mapping(struct address_space *mapping);
1070 : #else
1071 : static inline bool shmem_mapping(struct address_space *mapping)
1072 : {
1073 : return false;
1074 : }
1075 : #endif
1076 :
1077 : extern int can_do_mlock(void);
1078 : extern int user_shm_lock(size_t, struct user_struct *);
1079 : extern void user_shm_unlock(size_t, struct user_struct *);
1080 :
1081 : /*
1082 : * Parameter block passed down to zap_pte_range in exceptional cases.
1083 : */
1084 : struct zap_details {
1085 : struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
1086 : struct address_space *check_mapping; /* Check page->mapping if set */
1087 : pgoff_t first_index; /* Lowest page->index to unmap */
1088 : pgoff_t last_index; /* Highest page->index to unmap */
1089 : };
1090 :
1091 : struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1092 : pte_t pte);
1093 :
1094 : int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1095 : unsigned long size);
1096 : void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1097 : unsigned long size, struct zap_details *);
1098 : void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1099 : unsigned long start, unsigned long end);
1100 :
1101 : /**
1102 : * mm_walk - callbacks for walk_page_range
1103 : * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
1104 : * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1105 : * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1106 : * this handler is required to be able to handle
1107 : * pmd_trans_huge() pmds. They may simply choose to
1108 : * split_huge_page() instead of handling it explicitly.
1109 : * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1110 : * @pte_hole: if set, called for each hole at all levels
1111 : * @hugetlb_entry: if set, called for each hugetlb entry
1112 : * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
1113 : * is used.
1114 : *
1115 : * (see walk_page_range for more details)
1116 : */
1117 : struct mm_walk {
1118 : int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
1119 : unsigned long next, struct mm_walk *walk);
1120 : int (*pud_entry)(pud_t *pud, unsigned long addr,
1121 : unsigned long next, struct mm_walk *walk);
1122 : int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1123 : unsigned long next, struct mm_walk *walk);
1124 : int (*pte_entry)(pte_t *pte, unsigned long addr,
1125 : unsigned long next, struct mm_walk *walk);
1126 : int (*pte_hole)(unsigned long addr, unsigned long next,
1127 : struct mm_walk *walk);
1128 : int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1129 : unsigned long addr, unsigned long next,
1130 : struct mm_walk *walk);
1131 : struct mm_struct *mm;
1132 : void *private;
1133 : };
1134 :
1135 : int walk_page_range(unsigned long addr, unsigned long end,
1136 : struct mm_walk *walk);
1137 : void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1138 : unsigned long end, unsigned long floor, unsigned long ceiling);
1139 : int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1140 : struct vm_area_struct *vma);
1141 : void unmap_mapping_range(struct address_space *mapping,
1142 : loff_t const holebegin, loff_t const holelen, int even_cows);
1143 : int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1144 : unsigned long *pfn);
1145 : int follow_phys(struct vm_area_struct *vma, unsigned long address,
1146 : unsigned int flags, unsigned long *prot, resource_size_t *phys);
1147 : int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1148 : void *buf, int len, int write);
1149 :
1150 : static inline void unmap_shared_mapping_range(struct address_space *mapping,
1151 : loff_t const holebegin, loff_t const holelen)
1152 : {
1153 : unmap_mapping_range(mapping, holebegin, holelen, 0);
1154 : }
1155 :
1156 : extern void truncate_pagecache(struct inode *inode, loff_t new);
1157 : extern void truncate_setsize(struct inode *inode, loff_t newsize);
1158 : void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1159 : int truncate_inode_page(struct address_space *mapping, struct page *page);
1160 : int generic_error_remove_page(struct address_space *mapping, struct page *page);
1161 : int invalidate_inode_page(struct page *page);
1162 :
1163 : #ifdef CONFIG_MMU
1164 : extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1165 : unsigned long address, unsigned int flags);
1166 : extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1167 : unsigned long address, unsigned int fault_flags);
1168 : #else
1169 : static inline int handle_mm_fault(struct mm_struct *mm,
1170 : struct vm_area_struct *vma, unsigned long address,
1171 : unsigned int flags)
1172 : {
1173 : /* should never happen if there's no MMU */
1174 : BUG();
1175 : return VM_FAULT_SIGBUS;
1176 : }
1177 : static inline int fixup_user_fault(struct task_struct *tsk,
1178 : struct mm_struct *mm, unsigned long address,
1179 : unsigned int fault_flags)
1180 : {
1181 : /* should never happen if there's no MMU */
1182 : BUG();
1183 : return -EFAULT;
1184 : }
1185 : #endif
1186 :
1187 : extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1188 : extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1189 : void *buf, int len, int write);
1190 :
1191 : long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1192 : unsigned long start, unsigned long nr_pages,
1193 : unsigned int foll_flags, struct page **pages,
1194 : struct vm_area_struct **vmas, int *nonblocking);
1195 : long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1196 : unsigned long start, unsigned long nr_pages,
1197 : int write, int force, struct page **pages,
1198 : struct vm_area_struct **vmas);
1199 : int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1200 : struct page **pages);
1201 : struct kvec;
1202 : int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1203 : struct page **pages);
1204 : int get_kernel_page(unsigned long start, int write, struct page **pages);
1205 : struct page *get_dump_page(unsigned long addr);
1206 :
1207 : extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1208 : extern void do_invalidatepage(struct page *page, unsigned int offset,
1209 : unsigned int length);
1210 :
1211 : int __set_page_dirty_nobuffers(struct page *page);
1212 : int __set_page_dirty_no_writeback(struct page *page);
1213 : int redirty_page_for_writepage(struct writeback_control *wbc,
1214 : struct page *page);
1215 : void account_page_dirtied(struct page *page, struct address_space *mapping);
1216 : void account_page_writeback(struct page *page);
1217 : int set_page_dirty(struct page *page);
1218 : int set_page_dirty_lock(struct page *page);
1219 : int clear_page_dirty_for_io(struct page *page);
1220 : int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1221 :
1222 : /* Is the vma a continuation of the stack vma above it? */
1223 : static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1224 : {
1225 : return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1226 : }
1227 :
1228 : static inline int stack_guard_page_start(struct vm_area_struct *vma,
1229 : unsigned long addr)
1230 : {
1231 : return (vma->vm_flags & VM_GROWSDOWN) &&
1232 : (vma->vm_start == addr) &&
1233 : !vma_growsdown(vma->vm_prev, addr);
1234 : }
1235 :
1236 : /* Is the vma a continuation of the stack vma below it? */
1237 : static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1238 : {
1239 : return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1240 : }
1241 :
1242 : static inline int stack_guard_page_end(struct vm_area_struct *vma,
1243 : unsigned long addr)
1244 : {
1245 : return (vma->vm_flags & VM_GROWSUP) &&
1246 : (vma->vm_end == addr) &&
1247 : !vma_growsup(vma->vm_next, addr);
1248 : }
1249 :
1250 : extern pid_t
1251 : vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1252 :
1253 : extern unsigned long move_page_tables(struct vm_area_struct *vma,
1254 : unsigned long old_addr, struct vm_area_struct *new_vma,
1255 : unsigned long new_addr, unsigned long len,
1256 : bool need_rmap_locks);
1257 : extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1258 : unsigned long end, pgprot_t newprot,
1259 : int dirty_accountable, int prot_numa);
1260 : extern int mprotect_fixup(struct vm_area_struct *vma,
1261 : struct vm_area_struct **pprev, unsigned long start,
1262 : unsigned long end, unsigned long newflags);
1263 :
1264 : /*
1265 : * doesn't attempt to fault and will return short.
1266 : */
1267 : int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1268 : struct page **pages);
1269 : /*
1270 : * per-process(per-mm_struct) statistics.
1271 : */
1272 : static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1273 : {
1274 : long val = atomic_long_read(&mm->rss_stat.count[member]);
1275 :
1276 : #ifdef SPLIT_RSS_COUNTING
1277 : /*
1278 : * counter is updated in asynchronous manner and may go to minus.
1279 : * But it's never be expected number for users.
1280 : */
1281 : if (val < 0)
1282 : val = 0;
1283 : #endif
1284 : return (unsigned long)val;
1285 : }
1286 :
1287 : static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1288 : {
1289 : atomic_long_add(value, &mm->rss_stat.count[member]);
1290 : }
1291 :
1292 : static inline void inc_mm_counter(struct mm_struct *mm, int member)
1293 : {
1294 : atomic_long_inc(&mm->rss_stat.count[member]);
1295 : }
1296 :
1297 : static inline void dec_mm_counter(struct mm_struct *mm, int member)
1298 : {
1299 : atomic_long_dec(&mm->rss_stat.count[member]);
1300 : }
1301 :
1302 : static inline unsigned long get_mm_rss(struct mm_struct *mm)
1303 : {
1304 : return get_mm_counter(mm, MM_FILEPAGES) +
1305 : get_mm_counter(mm, MM_ANONPAGES);
1306 : }
1307 :
1308 : static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1309 : {
1310 : return max(mm->hiwater_rss, get_mm_rss(mm));
1311 : }
1312 :
1313 : static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1314 : {
1315 : return max(mm->hiwater_vm, mm->total_vm);
1316 : }
1317 :
1318 : static inline void update_hiwater_rss(struct mm_struct *mm)
1319 : {
1320 : unsigned long _rss = get_mm_rss(mm);
1321 :
1322 : if ((mm)->hiwater_rss < _rss)
1323 : (mm)->hiwater_rss = _rss;
1324 : }
1325 :
1326 : static inline void update_hiwater_vm(struct mm_struct *mm)
1327 : {
1328 : if (mm->hiwater_vm < mm->total_vm)
1329 : mm->hiwater_vm = mm->total_vm;
1330 : }
1331 :
1332 : static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1333 : struct mm_struct *mm)
1334 : {
1335 : unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1336 :
1337 : if (*maxrss < hiwater_rss)
1338 : *maxrss = hiwater_rss;
1339 : }
1340 :
1341 : #if defined(SPLIT_RSS_COUNTING)
1342 : void sync_mm_rss(struct mm_struct *mm);
1343 : #else
1344 : static inline void sync_mm_rss(struct mm_struct *mm)
1345 : {
1346 : }
1347 : #endif
1348 :
1349 : int vma_wants_writenotify(struct vm_area_struct *vma);
1350 :
1351 : extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1352 : spinlock_t **ptl);
1353 : static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1354 : spinlock_t **ptl)
1355 : {
1356 : pte_t *ptep;
1357 : __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1358 : return ptep;
1359 : }
1360 :
1361 : #ifdef __PAGETABLE_PUD_FOLDED
1362 : static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1363 : unsigned long address)
1364 : {
1365 : return 0;
1366 : }
1367 : #else
1368 : int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1369 : #endif
1370 :
1371 : #ifdef __PAGETABLE_PMD_FOLDED
1372 : static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1373 : unsigned long address)
1374 : {
1375 : return 0;
1376 : }
1377 : #else
1378 : int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1379 : #endif
1380 :
1381 : int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1382 : pmd_t *pmd, unsigned long address);
1383 : int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1384 :
1385 : /*
1386 : * The following ifdef needed to get the 4level-fixup.h header to work.
1387 : * Remove it when 4level-fixup.h has been removed.
1388 : */
1389 : #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1390 : static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1391 : {
1392 : return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1393 : NULL: pud_offset(pgd, address);
1394 : }
1395 :
1396 : static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1397 : {
1398 : return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1399 : NULL: pmd_offset(pud, address);
1400 : }
1401 : #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1402 :
1403 : #if USE_SPLIT_PTE_PTLOCKS
1404 : #if ALLOC_SPLIT_PTLOCKS
1405 : void __init ptlock_cache_init(void);
1406 : extern bool ptlock_alloc(struct page *page);
1407 : extern void ptlock_free(struct page *page);
1408 :
1409 : static inline spinlock_t *ptlock_ptr(struct page *page)
1410 : {
1411 : return page->ptl;
1412 : }
1413 : #else /* ALLOC_SPLIT_PTLOCKS */
1414 : static inline void ptlock_cache_init(void)
1415 : {
1416 : }
1417 :
1418 : static inline bool ptlock_alloc(struct page *page)
1419 : {
1420 : return true;
1421 : }
1422 :
1423 : static inline void ptlock_free(struct page *page)
1424 : {
1425 : }
1426 :
1427 : static inline spinlock_t *ptlock_ptr(struct page *page)
1428 : {
1429 : return &page->ptl;
1430 : }
1431 : #endif /* ALLOC_SPLIT_PTLOCKS */
1432 :
1433 : static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1434 : {
1435 : return ptlock_ptr(pmd_page(*pmd));
1436 : }
1437 :
1438 : static inline bool ptlock_init(struct page *page)
1439 : {
1440 : /*
1441 : * prep_new_page() initialize page->private (and therefore page->ptl)
1442 : * with 0. Make sure nobody took it in use in between.
1443 : *
1444 : * It can happen if arch try to use slab for page table allocation:
1445 : * slab code uses page->slab_cache and page->first_page (for tail
1446 : * pages), which share storage with page->ptl.
1447 : */
1448 : VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1449 : if (!ptlock_alloc(page))
1450 : return false;
1451 : spin_lock_init(ptlock_ptr(page));
1452 : return true;
1453 : }
1454 :
1455 : /* Reset page->mapping so free_pages_check won't complain. */
1456 : static inline void pte_lock_deinit(struct page *page)
1457 : {
1458 : page->mapping = NULL;
1459 : ptlock_free(page);
1460 : }
1461 :
1462 : #else /* !USE_SPLIT_PTE_PTLOCKS */
1463 : /*
1464 : * We use mm->page_table_lock to guard all pagetable pages of the mm.
1465 : */
1466 : static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1467 : {
1468 : return &mm->page_table_lock;
1469 : }
1470 : static inline void ptlock_cache_init(void) {}
1471 : static inline bool ptlock_init(struct page *page) { return true; }
1472 : static inline void pte_lock_deinit(struct page *page) {}
1473 : #endif /* USE_SPLIT_PTE_PTLOCKS */
1474 :
1475 : static inline void pgtable_init(void)
1476 : {
1477 : ptlock_cache_init();
1478 : pgtable_cache_init();
1479 : }
1480 :
1481 : static inline bool pgtable_page_ctor(struct page *page)
1482 : {
1483 : inc_zone_page_state(page, NR_PAGETABLE);
1484 : return ptlock_init(page);
1485 : }
1486 :
1487 : static inline void pgtable_page_dtor(struct page *page)
1488 : {
1489 : pte_lock_deinit(page);
1490 : dec_zone_page_state(page, NR_PAGETABLE);
1491 : }
1492 :
1493 : #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1494 : ({ \
1495 : spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1496 : pte_t *__pte = pte_offset_map(pmd, address); \
1497 : *(ptlp) = __ptl; \
1498 : spin_lock(__ptl); \
1499 : __pte; \
1500 : })
1501 :
1502 : #define pte_unmap_unlock(pte, ptl) do { \
1503 : spin_unlock(ptl); \
1504 : pte_unmap(pte); \
1505 : } while (0)
1506 :
1507 : #define pte_alloc_map(mm, vma, pmd, address) \
1508 : ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1509 : pmd, address))? \
1510 : NULL: pte_offset_map(pmd, address))
1511 :
1512 : #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1513 : ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1514 : pmd, address))? \
1515 : NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1516 :
1517 : #define pte_alloc_kernel(pmd, address) \
1518 : ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1519 : NULL: pte_offset_kernel(pmd, address))
1520 :
1521 : #if USE_SPLIT_PMD_PTLOCKS
1522 :
1523 : static struct page *pmd_to_page(pmd_t *pmd)
1524 : {
1525 : unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1526 : return virt_to_page((void *)((unsigned long) pmd & mask));
1527 : }
1528 :
1529 : static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1530 : {
1531 : return ptlock_ptr(pmd_to_page(pmd));
1532 : }
1533 :
1534 : static inline bool pgtable_pmd_page_ctor(struct page *page)
1535 : {
1536 : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1537 : page->pmd_huge_pte = NULL;
1538 : #endif
1539 : return ptlock_init(page);
1540 : }
1541 :
1542 : static inline void pgtable_pmd_page_dtor(struct page *page)
1543 : {
1544 : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1545 : VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1546 : #endif
1547 : ptlock_free(page);
1548 : }
1549 :
1550 : #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1551 :
1552 : #else
1553 :
1554 : static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1555 : {
1556 : return &mm->page_table_lock;
1557 : }
1558 :
1559 : static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1560 : static inline void pgtable_pmd_page_dtor(struct page *page) {}
1561 :
1562 : #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1563 :
1564 : #endif
1565 :
1566 : static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1567 : {
1568 : spinlock_t *ptl = pmd_lockptr(mm, pmd);
1569 : spin_lock(ptl);
1570 : return ptl;
1571 : }
1572 :
1573 : extern void free_area_init(unsigned long * zones_size);
1574 : extern void free_area_init_node(int nid, unsigned long * zones_size,
1575 : unsigned long zone_start_pfn, unsigned long *zholes_size);
1576 : extern void free_initmem(void);
1577 :
1578 : /*
1579 : * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1580 : * into the buddy system. The freed pages will be poisoned with pattern
1581 : * "poison" if it's within range [0, UCHAR_MAX].
1582 : * Return pages freed into the buddy system.
1583 : */
1584 : extern unsigned long free_reserved_area(void *start, void *end,
1585 : int poison, char *s);
1586 :
1587 : #ifdef CONFIG_HIGHMEM
1588 : /*
1589 : * Free a highmem page into the buddy system, adjusting totalhigh_pages
1590 : * and totalram_pages.
1591 : */
1592 : extern void free_highmem_page(struct page *page);
1593 : #endif
1594 :
1595 : extern void adjust_managed_page_count(struct page *page, long count);
1596 : extern void mem_init_print_info(const char *str);
1597 :
1598 : /* Free the reserved page into the buddy system, so it gets managed. */
1599 : static inline void __free_reserved_page(struct page *page)
1600 : {
1601 : ClearPageReserved(page);
1602 : init_page_count(page);
1603 : __free_page(page);
1604 : }
1605 :
1606 : static inline void free_reserved_page(struct page *page)
1607 : {
1608 : __free_reserved_page(page);
1609 : adjust_managed_page_count(page, 1);
1610 : }
1611 :
1612 : static inline void mark_page_reserved(struct page *page)
1613 : {
1614 : SetPageReserved(page);
1615 : adjust_managed_page_count(page, -1);
1616 : }
1617 :
1618 : /*
1619 : * Default method to free all the __init memory into the buddy system.
1620 : * The freed pages will be poisoned with pattern "poison" if it's within
1621 : * range [0, UCHAR_MAX].
1622 : * Return pages freed into the buddy system.
1623 : */
1624 : static inline unsigned long free_initmem_default(int poison)
1625 : {
1626 : extern char __init_begin[], __init_end[];
1627 :
1628 : return free_reserved_area(&__init_begin, &__init_end,
1629 : poison, "unused kernel");
1630 : }
1631 :
1632 : static inline unsigned long get_num_physpages(void)
1633 : {
1634 : int nid;
1635 : unsigned long phys_pages = 0;
1636 :
1637 : for_each_online_node(nid)
1638 : phys_pages += node_present_pages(nid);
1639 :
1640 : return phys_pages;
1641 : }
1642 :
1643 : #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1644 : /*
1645 : * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1646 : * zones, allocate the backing mem_map and account for memory holes in a more
1647 : * architecture independent manner. This is a substitute for creating the
1648 : * zone_sizes[] and zholes_size[] arrays and passing them to
1649 : * free_area_init_node()
1650 : *
1651 : * An architecture is expected to register range of page frames backed by
1652 : * physical memory with memblock_add[_node]() before calling
1653 : * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1654 : * usage, an architecture is expected to do something like
1655 : *
1656 : * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1657 : * max_highmem_pfn};
1658 : * for_each_valid_physical_page_range()
1659 : * memblock_add_node(base, size, nid)
1660 : * free_area_init_nodes(max_zone_pfns);
1661 : *
1662 : * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1663 : * registered physical page range. Similarly
1664 : * sparse_memory_present_with_active_regions() calls memory_present() for
1665 : * each range when SPARSEMEM is enabled.
1666 : *
1667 : * See mm/page_alloc.c for more information on each function exposed by
1668 : * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1669 : */
1670 : extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1671 : unsigned long node_map_pfn_alignment(void);
1672 : unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1673 : unsigned long end_pfn);
1674 : extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1675 : unsigned long end_pfn);
1676 : extern void get_pfn_range_for_nid(unsigned int nid,
1677 : unsigned long *start_pfn, unsigned long *end_pfn);
1678 : extern unsigned long find_min_pfn_with_active_regions(void);
1679 : extern void free_bootmem_with_active_regions(int nid,
1680 : unsigned long max_low_pfn);
1681 : extern void sparse_memory_present_with_active_regions(int nid);
1682 :
1683 : #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1684 :
1685 : #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1686 : !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1687 : static inline int __early_pfn_to_nid(unsigned long pfn)
1688 : {
1689 : return 0;
1690 : }
1691 : #else
1692 : /* please see mm/page_alloc.c */
1693 : extern int __meminit early_pfn_to_nid(unsigned long pfn);
1694 : /* there is a per-arch backend function. */
1695 : extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1696 : #endif
1697 :
1698 : extern void set_dma_reserve(unsigned long new_dma_reserve);
1699 : extern void memmap_init_zone(unsigned long, int, unsigned long,
1700 : unsigned long, enum memmap_context);
1701 : extern void setup_per_zone_wmarks(void);
1702 : extern int __meminit init_per_zone_wmark_min(void);
1703 : extern void mem_init(void);
1704 : extern void __init mmap_init(void);
1705 : extern void show_mem(unsigned int flags);
1706 : extern void si_meminfo(struct sysinfo * val);
1707 : extern void si_meminfo_node(struct sysinfo *val, int nid);
1708 :
1709 : extern __printf(3, 4)
1710 : void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1711 :
1712 : extern void setup_per_cpu_pageset(void);
1713 :
1714 : extern void zone_pcp_update(struct zone *zone);
1715 : extern void zone_pcp_reset(struct zone *zone);
1716 :
1717 : /* page_alloc.c */
1718 : extern int min_free_kbytes;
1719 :
1720 : /* nommu.c */
1721 : extern atomic_long_t mmap_pages_allocated;
1722 : extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1723 :
1724 : /* interval_tree.c */
1725 : void vma_interval_tree_insert(struct vm_area_struct *node,
1726 : struct rb_root *root);
1727 : void vma_interval_tree_insert_after(struct vm_area_struct *node,
1728 : struct vm_area_struct *prev,
1729 : struct rb_root *root);
1730 : void vma_interval_tree_remove(struct vm_area_struct *node,
1731 : struct rb_root *root);
1732 : struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1733 : unsigned long start, unsigned long last);
1734 : struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1735 : unsigned long start, unsigned long last);
1736 :
1737 : #define vma_interval_tree_foreach(vma, root, start, last) \
1738 : for (vma = vma_interval_tree_iter_first(root, start, last); \
1739 : vma; vma = vma_interval_tree_iter_next(vma, start, last))
1740 :
1741 : static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1742 : struct list_head *list)
1743 : {
1744 : list_add_tail(&vma->shared.nonlinear, list);
1745 : }
1746 :
1747 : void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1748 : struct rb_root *root);
1749 : void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1750 : struct rb_root *root);
1751 : struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1752 : struct rb_root *root, unsigned long start, unsigned long last);
1753 : struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1754 : struct anon_vma_chain *node, unsigned long start, unsigned long last);
1755 : #ifdef CONFIG_DEBUG_VM_RB
1756 : void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1757 : #endif
1758 :
1759 : #define anon_vma_interval_tree_foreach(avc, root, start, last) \
1760 : for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1761 : avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1762 :
1763 : /* mmap.c */
1764 : extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1765 : extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1766 : unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1767 : extern struct vm_area_struct *vma_merge(struct mm_struct *,
1768 : struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1769 : unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1770 : struct mempolicy *);
1771 : extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1772 : extern int split_vma(struct mm_struct *,
1773 : struct vm_area_struct *, unsigned long addr, int new_below);
1774 : extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1775 : extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1776 : struct rb_node **, struct rb_node *);
1777 : extern void unlink_file_vma(struct vm_area_struct *);
1778 : extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1779 : unsigned long addr, unsigned long len, pgoff_t pgoff,
1780 : bool *need_rmap_locks);
1781 : extern void exit_mmap(struct mm_struct *);
1782 :
1783 : extern int mm_take_all_locks(struct mm_struct *mm);
1784 : extern void mm_drop_all_locks(struct mm_struct *mm);
1785 :
1786 : extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1787 : extern struct file *get_mm_exe_file(struct mm_struct *mm);
1788 :
1789 : extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1790 : extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1791 : unsigned long addr, unsigned long len,
1792 : unsigned long flags,
1793 : const struct vm_special_mapping *spec);
1794 : /* This is an obsolete alternative to _install_special_mapping. */
1795 : extern int install_special_mapping(struct mm_struct *mm,
1796 : unsigned long addr, unsigned long len,
1797 : unsigned long flags, struct page **pages);
1798 :
1799 : extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1800 :
1801 : extern unsigned long mmap_region(struct file *file, unsigned long addr,
1802 : unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1803 : extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1804 : unsigned long len, unsigned long prot, unsigned long flags,
1805 : unsigned long pgoff, unsigned long *populate);
1806 : extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1807 :
1808 : #ifdef CONFIG_MMU
1809 : extern int __mm_populate(unsigned long addr, unsigned long len,
1810 : int ignore_errors);
1811 : static inline void mm_populate(unsigned long addr, unsigned long len)
1812 : {
1813 : /* Ignore errors */
1814 : (void) __mm_populate(addr, len, 1);
1815 : }
1816 : #else
1817 : static inline void mm_populate(unsigned long addr, unsigned long len) {}
1818 : #endif
1819 :
1820 : /* These take the mm semaphore themselves */
1821 : extern unsigned long vm_brk(unsigned long, unsigned long);
1822 : extern int vm_munmap(unsigned long, size_t);
1823 : extern unsigned long vm_mmap(struct file *, unsigned long,
1824 : unsigned long, unsigned long,
1825 : unsigned long, unsigned long);
1826 :
1827 : struct vm_unmapped_area_info {
1828 : #define VM_UNMAPPED_AREA_TOPDOWN 1
1829 : unsigned long flags;
1830 : unsigned long length;
1831 : unsigned long low_limit;
1832 : unsigned long high_limit;
1833 : unsigned long align_mask;
1834 : unsigned long align_offset;
1835 : };
1836 :
1837 : extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1838 : extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1839 :
1840 : /*
1841 : * Search for an unmapped address range.
1842 : *
1843 : * We are looking for a range that:
1844 : * - does not intersect with any VMA;
1845 : * - is contained within the [low_limit, high_limit) interval;
1846 : * - is at least the desired size.
1847 : * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1848 : */
1849 : static inline unsigned long
1850 : vm_unmapped_area(struct vm_unmapped_area_info *info)
1851 : {
1852 : if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1853 : return unmapped_area(info);
1854 : else
1855 : return unmapped_area_topdown(info);
1856 : }
1857 :
1858 : /* truncate.c */
1859 : extern void truncate_inode_pages(struct address_space *, loff_t);
1860 : extern void truncate_inode_pages_range(struct address_space *,
1861 : loff_t lstart, loff_t lend);
1862 : extern void truncate_inode_pages_final(struct address_space *);
1863 :
1864 : /* generic vm_area_ops exported for stackable file systems */
1865 : extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1866 : extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
1867 : extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1868 :
1869 : /* mm/page-writeback.c */
1870 : int write_one_page(struct page *page, int wait);
1871 : void task_dirty_inc(struct task_struct *tsk);
1872 :
1873 : /* readahead.c */
1874 : #define VM_MAX_READAHEAD 128 /* kbytes */
1875 : #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1876 :
1877 : int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1878 : pgoff_t offset, unsigned long nr_to_read);
1879 :
1880 : void page_cache_sync_readahead(struct address_space *mapping,
1881 : struct file_ra_state *ra,
1882 : struct file *filp,
1883 : pgoff_t offset,
1884 : unsigned long size);
1885 :
1886 : void page_cache_async_readahead(struct address_space *mapping,
1887 : struct file_ra_state *ra,
1888 : struct file *filp,
1889 : struct page *pg,
1890 : pgoff_t offset,
1891 : unsigned long size);
1892 :
1893 : unsigned long max_sane_readahead(unsigned long nr);
1894 :
1895 : /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1896 : extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1897 :
1898 : /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1899 : extern int expand_downwards(struct vm_area_struct *vma,
1900 : unsigned long address);
1901 : #if VM_GROWSUP
1902 : extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1903 : #else
1904 : #define expand_upwards(vma, address) do { } while (0)
1905 : #endif
1906 :
1907 : /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1908 : extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1909 : extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1910 : struct vm_area_struct **pprev);
1911 :
1912 : /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1913 : NULL if none. Assume start_addr < end_addr. */
1914 : static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1915 : {
1916 : struct vm_area_struct * vma = find_vma(mm,start_addr);
1917 :
1918 : if (vma && end_addr <= vma->vm_start)
1919 : vma = NULL;
1920 : return vma;
1921 : }
1922 :
1923 : static inline unsigned long vma_pages(struct vm_area_struct *vma)
1924 : {
1925 : return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1926 : }
1927 :
1928 : /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1929 : static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1930 : unsigned long vm_start, unsigned long vm_end)
1931 : {
1932 : struct vm_area_struct *vma = find_vma(mm, vm_start);
1933 :
1934 : if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1935 : vma = NULL;
1936 :
1937 : return vma;
1938 : }
1939 :
1940 : #ifdef CONFIG_MMU
1941 : pgprot_t vm_get_page_prot(unsigned long vm_flags);
1942 : #else
1943 : static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1944 : {
1945 : return __pgprot(0);
1946 : }
1947 : #endif
1948 :
1949 : #ifdef CONFIG_NUMA_BALANCING
1950 : unsigned long change_prot_numa(struct vm_area_struct *vma,
1951 : unsigned long start, unsigned long end);
1952 : #endif
1953 :
1954 : struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1955 : int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1956 : unsigned long pfn, unsigned long size, pgprot_t);
1957 : int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1958 : int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1959 : unsigned long pfn);
1960 : int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1961 : unsigned long pfn);
1962 : int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
1963 :
1964 :
1965 : struct page *follow_page_mask(struct vm_area_struct *vma,
1966 : unsigned long address, unsigned int foll_flags,
1967 : unsigned int *page_mask);
1968 :
1969 : static inline struct page *follow_page(struct vm_area_struct *vma,
1970 : unsigned long address, unsigned int foll_flags)
1971 : {
1972 : unsigned int unused_page_mask;
1973 : return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
1974 : }
1975 :
1976 : #define FOLL_WRITE 0x01 /* check pte is writable */
1977 : #define FOLL_TOUCH 0x02 /* mark page accessed */
1978 : #define FOLL_GET 0x04 /* do get_page on page */
1979 : #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
1980 : #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
1981 : #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1982 : * and return without waiting upon it */
1983 : #define FOLL_MLOCK 0x40 /* mark page as mlocked */
1984 : #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
1985 : #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
1986 : #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
1987 : #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
1988 :
1989 : typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1990 : void *data);
1991 : extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1992 : unsigned long size, pte_fn_t fn, void *data);
1993 :
1994 : #ifdef CONFIG_PROC_FS
1995 : void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1996 : #else
1997 : static inline void vm_stat_account(struct mm_struct *mm,
1998 : unsigned long flags, struct file *file, long pages)
1999 : {
2000 : mm->total_vm += pages;
2001 : }
2002 : #endif /* CONFIG_PROC_FS */
2003 :
2004 : #ifdef CONFIG_DEBUG_PAGEALLOC
2005 : extern void kernel_map_pages(struct page *page, int numpages, int enable);
2006 : #ifdef CONFIG_HIBERNATION
2007 : extern bool kernel_page_present(struct page *page);
2008 : #endif /* CONFIG_HIBERNATION */
2009 : #else
2010 : static inline void
2011 : kernel_map_pages(struct page *page, int numpages, int enable) {}
2012 : #ifdef CONFIG_HIBERNATION
2013 : static inline bool kernel_page_present(struct page *page) { return true; }
2014 : #endif /* CONFIG_HIBERNATION */
2015 : #endif
2016 :
2017 : #ifdef __HAVE_ARCH_GATE_AREA
2018 : extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2019 : extern int in_gate_area_no_mm(unsigned long addr);
2020 : extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2021 : #else
2022 : static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2023 : {
2024 : return NULL;
2025 : }
2026 : static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2027 : static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2028 : {
2029 : return 0;
2030 : }
2031 : #endif /* __HAVE_ARCH_GATE_AREA */
2032 :
2033 : #ifdef CONFIG_SYSCTL
2034 : extern int sysctl_drop_caches;
2035 : int drop_caches_sysctl_handler(struct ctl_table *, int,
2036 : void __user *, size_t *, loff_t *);
2037 : #endif
2038 :
2039 : unsigned long shrink_slab(struct shrink_control *shrink,
2040 : unsigned long nr_pages_scanned,
2041 : unsigned long lru_pages);
2042 :
2043 : #ifndef CONFIG_MMU
2044 : #define randomize_va_space 0
2045 : #else
2046 : extern int randomize_va_space;
2047 : #endif
2048 :
2049 : const char * arch_vma_name(struct vm_area_struct *vma);
2050 : void print_vma_addr(char *prefix, unsigned long rip);
2051 :
2052 : void sparse_mem_maps_populate_node(struct page **map_map,
2053 : unsigned long pnum_begin,
2054 : unsigned long pnum_end,
2055 : unsigned long map_count,
2056 : int nodeid);
2057 :
2058 : struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2059 : pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2060 : pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2061 : pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2062 : pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2063 : void *vmemmap_alloc_block(unsigned long size, int node);
2064 : void *vmemmap_alloc_block_buf(unsigned long size, int node);
2065 : void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2066 : int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2067 : int node);
2068 : int vmemmap_populate(unsigned long start, unsigned long end, int node);
2069 : void vmemmap_populate_print_last(void);
2070 : #ifdef CONFIG_MEMORY_HOTPLUG
2071 : void vmemmap_free(unsigned long start, unsigned long end);
2072 : #endif
2073 : void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2074 : unsigned long size);
2075 :
2076 : enum mf_flags {
2077 : MF_COUNT_INCREASED = 1 << 0,
2078 : MF_ACTION_REQUIRED = 1 << 1,
2079 : MF_MUST_KILL = 1 << 2,
2080 : MF_SOFT_OFFLINE = 1 << 3,
2081 : };
2082 : extern int memory_failure(unsigned long pfn, int trapno, int flags);
2083 : extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2084 : extern int unpoison_memory(unsigned long pfn);
2085 : extern int sysctl_memory_failure_early_kill;
2086 : extern int sysctl_memory_failure_recovery;
2087 : extern void shake_page(struct page *p, int access);
2088 : extern atomic_long_t num_poisoned_pages;
2089 : extern int soft_offline_page(struct page *page, int flags);
2090 :
2091 : #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2092 : extern void clear_huge_page(struct page *page,
2093 : unsigned long addr,
2094 : unsigned int pages_per_huge_page);
2095 : extern void copy_user_huge_page(struct page *dst, struct page *src,
2096 : unsigned long addr, struct vm_area_struct *vma,
2097 : unsigned int pages_per_huge_page);
2098 : #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2099 :
2100 : #ifdef CONFIG_DEBUG_PAGEALLOC
2101 : extern unsigned int _debug_guardpage_minorder;
2102 :
2103 : static inline unsigned int debug_guardpage_minorder(void)
2104 : {
2105 : return _debug_guardpage_minorder;
2106 : }
2107 :
2108 : static inline bool page_is_guard(struct page *page)
2109 : {
2110 : return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
2111 : }
2112 : #else
2113 : static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2114 : static inline bool page_is_guard(struct page *page) { return false; }
2115 : #endif /* CONFIG_DEBUG_PAGEALLOC */
2116 :
2117 : #if MAX_NUMNODES > 1
2118 : void __init setup_nr_node_ids(void);
2119 : #else
2120 : static inline void setup_nr_node_ids(void) {}
2121 : #endif
2122 :
2123 : #endif /* __KERNEL__ */
2124 : #endif /* _LINUX_MM_H */
|